We consider a constrained variational problem where the energy functional includes a logarithmic convolution term and an external potential . There is a threshold that we establish existence and nonexist-ence results for constraint minimizers: for , minimizers exist for any ; for with and with , no minimizer exists. Furthermore, for and , we analyze the limiting behavior of positive minimizers, showing that after suitable scaling, they converge to the standard ground state solution of in . We also de-rive asymptotic estimates for the location of the maximum points of mini-mizers.
Cite this paper
Li, X. (2026). Constraint Minimizers of the Gross-Pitaevskii Functional with Logarithmic Convolution and Ringed Shape Potential. Open Access Library Journal, 13, e14915. doi: http://dx.doi.org/10.4236/oalib.1114915.
Dalfovo, F., Giorgini, S., Pitaevskii, L.P. and Stringari, S. (1999) Theory of Bose-Einstein Condensation in Trapped Gases. Reviews of Modern Physics, 71, 463-512. https://doi.org/10.1103/revmodphys.71.463
Sackett, C.A., Stoof, H.T.C. and Hulet, R.G. (1998) Growth and Collapse of a Bose-Einstein Condensate with Attractive Interactions. Physical Review Letters, 80, 2031-2034. https://doi.org/10.1103/physrevlett.80.2031
Rendön, P.L. and Ley-Koo, E. (2015) Complete Sets of Circular, Elliptic and Bipolar Harmonic Vortices on a Plane. Revista Mexicana de Física, 61, 120-129.
Ryu, C., Andersen, M., Cladé, P., Natarajan, V., Helmerson, K. and Phillips, W. (2007) Observation of Persistent Flow of a Bose-Einstein Condensate in a To-roidal Trap. Physical Review Letters, 99, Article ID: 260401. https://doi.org/10.1103/physrevlett.99.260401
Halkyard, P.L. (2010) Dynamics in Cold Atomic Gases: Resonant Behaviour of the Quantum Delta-Kicked Accelerator and Bose-Einstein Condensates in Ring Traps. Ph.D. Thesis, Durham University.
Cingolani, S. and Jeanjean, L. (2019) Stationary Waves with Prescribed -Norm for the Planar Schrö-dinger—Poisson System. SIAM Journal on Mathematical Analysis, 51, 3533-3568. https://doi.org/10.1137/19m1243907
Zhang, J. (2000) Stability of Standing Waves for Nonlinear Schrödinger Equations with Unbounded Poten-tials. Zeitschrift für angewandte Mathematik und Physik, 51, 498-503. https://doi.org/10.1007/pl00001512
Cingolani, S. and Weth, T. (2016) On the Planar Schrödinger-Poisson System. Annales de l’Institut Henri Poincaré C, Analyse non Linéaire, 33, 169-197. https://doi.org/10.1016/j.anihpc.2014.09.008
Liu, M. and Zhang, S. (2025) Normalized Solutions for the -Critical Schrödinger-Poisson System in . Annals of Functional Analysis, 16, 33-97. https://doi.org/10.1007/s43034-025-00447-z
Gidas, B., Ni, W.-M. and Nirenberg, L. (1981) Symmetry of Positive Solutions of Nonlinear Elliptic Equations in . Advances in Mathematics. Supplementary Studies, 7, 369-402.
Kwong, M.K. (1989) Uniqueness of Positive Solutions of in . Archive for Rational Me-chanics and Analysis, 105, 243-266. https://doi.org/10.1007/bf00251502
Guo, Y., Luo, Y. and Yang, W. (2020) The Nonexistence of Vortices for Rotating Bose-Einstein Condensates with Attractive Interactions. Archive for Rational Mechanics and Analysis, 238, 1231-1281. https://doi.org/10.1007/s00205-020-01564-w
Ni, W.-M. and Takagi, I. (1991) On the Shape of Least-Energy Solutions to a Semilinear Neumann Problem. Communications on Pure and Applied Mathematics, 44, 819-851. https://doi.org/10.1002/cpa.3160440705