全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Constraint Minimizers of the Gross-Pitaevskii Functional with Logarithmic Convolution and Ringed Shape Potential

DOI: 10.4236/oalib.1114915, PP. 1-13

Subject Areas: Mathematical Analysis, Mathematics, Functional Analysis

Keywords: Gross-Pitaevskii Functional, Constraint Minimizers, Logarithmic Convolution, Ringed Shape Potential

Full-Text   Cite this paper   Add to My Lib

Abstract

We consider a constrained variational problem where the energy functional includes a logarithmic convolution term and an external potential  . There is a threshold   that we establish existence and nonexist-ence results for constraint minimizers: for  , minimizers exist for any  ; for   with   and   with  , no minimizer exists. Furthermore, for   and  , we analyze the limiting behavior of positive minimizers, showing that after suitable scaling, they converge to the standard ground state solution   of   in  . We also de-rive asymptotic estimates for the location of the maximum points of mini-mizers.

Cite this paper

Li, X. (2026). Constraint Minimizers of the Gross-Pitaevskii Functional with Logarithmic Convolution and Ringed Shape Potential. Open Access Library Journal, 13, e14915. doi: http://dx.doi.org/10.4236/oalib.1114915.

References

[1]  Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E. and Cornell, E.A. (1995) Observation of Bose-Einstein Conden-sation in a Dilute Atomic Vapor. Science, 269, 198-201. https://doi.org/10.1126/science.269.5221.198
[2]  Dalfovo, F., Giorgini, S., Pitaevskii, L.P. and Stringari, S. (1999) Theory of Bose-Einstein Condensation in Trapped Gases. Reviews of Modern Physics, 71, 463-512. https://doi.org/10.1103/revmodphys.71.463
[3]  Sackett, C.A., Stoof, H.T.C. and Hulet, R.G. (1998) Growth and Collapse of a Bose-Einstein Condensate with Attractive Interactions. Physical Review Letters, 80, 2031-2034. https://doi.org/10.1103/physrevlett.80.2031
[4]  Bradley, C.C., Sackett, C.A. and Hulet, R.G. (1997) Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number. Physical Review Letters, 78, 985-989. https://doi.org/10.1103/physrevlett.78.985
[5]  Huepe, C., Métens, S., Dewel, G., Borckmans, P. and Brachet, M.E. (1999) Decay Rates in Attractive Bose-Einstein Condensates. Physical Review Letters, 82, 1616-1619. https://doi.org/10.1103/physrevlett.82.1616
[6]  Rendön, P.L. and Ley-Koo, E. (2015) Complete Sets of Circular, Elliptic and Bipolar Harmonic Vortices on a Plane. Revista Mexicana de Física, 61, 120-129.
[7]  Ryu, C., Andersen, M., Cladé, P., Natarajan, V., Helmerson, K. and Phillips, W. (2007) Observation of Persistent Flow of a Bose-Einstein Condensate in a To-roidal Trap. Physical Review Letters, 99, Article ID: 260401. https://doi.org/10.1103/physrevlett.99.260401
[8]  Halkyard, P.L. (2010) Dynamics in Cold Atomic Gases: Resonant Behaviour of the Quantum Delta-Kicked Accelerator and Bose-Einstein Condensates in Ring Traps. Ph.D. Thesis, Durham University.
[9]  Cingolani, S. and Jeanjean, L. (2019) Stationary Waves with Prescribed  -Norm for the Planar Schrö-dinger—Poisson System. SIAM Journal on Mathematical Analysis, 51, 3533-3568. https://doi.org/10.1137/19m1243907
[10]  Stubbe, J. (2008) Bound States of Two-Dimensional Schrödinger-Newton Equations.
[11]  Zhang, J. (2000) Stability of Standing Waves for Nonlinear Schrödinger Equations with Unbounded Poten-tials. Zeitschrift für angewandte Mathematik und Physik, 51, 498-503. https://doi.org/10.1007/pl00001512
[12]  Cingolani, S. and Weth, T. (2016) On the Planar Schrödinger-Poisson System. Annales de l’Institut Henri Poincaré C, Analyse non Linéaire, 33, 169-197. https://doi.org/10.1016/j.anihpc.2014.09.008
[13]  Liu, M. and Zhang, S. (2025) Normalized Solutions for the  -Critical Schrödinger-Poisson System in  . Annals of Functional Analysis, 16, 33-97. https://doi.org/10.1007/s43034-025-00447-z
[14]  Lieb, E.H. and Loss, M. (2001) Analysis, Graduate Studies in Mathe-matics. Vol. 14, 2nd Edition, American Mathematical Society.
[15]  Gidas, B., Ni, W.-M. and Nirenberg, L. (1981) Symmetry of Positive Solutions of Nonlinear Elliptic Equations in  . Advances in Mathematics. Supplementary Studies, 7, 369-402.
[16]  Kwong, M.K. (1989) Uniqueness of Positive Solutions of   in  . Archive for Rational Me-chanics and Analysis, 105, 243-266. https://doi.org/10.1007/bf00251502
[17]  Weinstein, M.I. (1983) Nonlinear Schrö-dinger Equations and Sharp Interpolation Estimates. Communications in Mathematical Physics, 87, 567-576. https://doi.org/10.1007/bf01208265
[18]  Guo, Y., Luo, Y. and Yang, W. (2020) The Nonexistence of Vortices for Rotating Bose-Einstein Condensates with Attractive Interactions. Archive for Rational Mechanics and Analysis, 238, 1231-1281. https://doi.org/10.1007/s00205-020-01564-w
[19]  Gilbarg, D. and Trudinger, N.S. (1997) Elliptic Partial Differential Equations of Second Order. Springer.
[20]  Ni, W.-M. and Takagi, I. (1991) On the Shape of Least-Energy Solutions to a Semilinear Neumann Problem. Communications on Pure and Applied Mathematics, 44, 819-851. https://doi.org/10.1002/cpa.3160440705

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133