%0 Journal Article %T Constraint Minimizers of the Gross-Pitaevskii Functional with Logarithmic Convolution and Ringed Shape Potential %A Xuanxuan Li %J Open Access Library Journal %V 13 %N 2 %P 1-13 %@ 2333-9721 %D 2026 %I Open Access Library %R 10.4236/oalib.1114915 %X We consider a constrained variational problem where the energy functional includes a logarithmic convolution term and an external potential  . There is a threshold   that we establish existence and nonexist-ence results for constraint minimizers: for  , minimizers exist for any  ; for   with   and   with  , no minimizer exists. Furthermore, for   and  , we analyze the limiting behavior of positive minimizers, showing that after suitable scaling, they converge to the standard ground state solution   of   in  . We also de-rive asymptotic estimates for the location of the maximum points of mini-mizers.
%K Gross-Pitaevskii Functional %K Constraint Minimizers %K Logarithmic Convolution %K Ringed Shape Potential %U http://www.oalib.com/paper/6888068