全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Mapping Ab Initio Physical Theories to Computational Chemistry Methods: The Contributions of Classical Mechanics, Thermodynamics and Statistical Mechanics, Electromagnetism, Relativity, Quantum Mechanics, and Quantum Field Theory

DOI: 10.4236/oalib.1114709, PP. 1-31

Subject Areas: Physical Chemistry

Keywords: Ab Initio Molecular Simulation, Computational Chemistry Methods

Full-Text   Cite this paper   Add to My Lib

Abstract

Ab initio quantum chemistry aims to predict molecular properties solely from fundamental physical constants and system composition, without empirical parameterization. This review elucidates how this endeavor is built upon an interdependent hierarchy of physical theories, each contributing essential concepts and introducing inherent approximations. We trace the foundational role of classical mechanics in the Born-Oppenheimer approximation, which separates nuclear and electronic motion, and the establishment of the molecular Hamiltonian through the synergy of quantum mechanics and classical electromagnetism. We detail how thermodynamics and statistical mechanics provide the critical link between microscopic quantum states and macroscopic observables through the partition function. The review further examines the essential integration of relativistic effects for heavy elements, governed by the Dirac equation, and the formal power of quantum field theory, which provides the second quantization formalism underpinning high-accuracy methods like coupled cluster theory. The emerging frontier of integrating Quantum Electrodynamics (QED) in chemistry, where the electromagnetic field itself is quantized, is also explored. Lastly, the discussion is framed by the central trade-off between the rigorous inclusion of physical effects—from electron correlation to relativistic and QED corrections—and the associated computational cost. This synthesis demonstrates that the ongoing evolution of ab initio methods is a systematic effort to replace the convenience-driven classical approximations with rigorously derived, unified physical theories, thereby extending the domain of first-principles prediction.

Cite this paper

Yang, C. (2026). Mapping Ab Initio Physical Theories to Computational Chemistry Methods: The Contributions of Classical Mechanics, Thermodynamics and Statistical Mechanics, Electromagnetism, Relativity, Quantum Mechanics, and Quantum Field Theory . Open Access Library Journal, 13, e14709. doi: http://dx.doi.org/10.4236/oalib.1114709.

References

[1]  Szabo, A. and Ostlund, N.S. (1996) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1-50.
[2]  Tully, J.C. (1990) Molecular Dynamics with Electronic Transitions. The Journal of Chemical Physics, 93, 1061-1071. https://doi.org/10.1063/1.459170
[3]  Born, M. and Oppenheimer, R. (1927) Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 457-484. https://doi.org/10.1002/andp.19273892002
[4]  Shavitt, I. and Bartlett, R.J. (2009) Many-Body Methods in Chemistry and Physics: MBPT and Cou-pled-Cluster Theory. Cambridge University Press.
[5]  Pyykko, P. (1988) Rela-tivistic Effects in Structural Chemistry. Chemical Reviews, 88, 563-594. https://doi.org/10.1021/cr00085a006
[6]  Liu, W. (2020) Essentials of Rela-tivistic Quantum Chemistry. Journal of Chemical Theory and Computation, 16, 1-6.
[7]  Hess, B.A. (1986) Relativistic Electronic-Structure Calculations Em-ploying a Two-Component No-Pair Formalism with External-Field Projection Operators. Physical Review A, 33, 3742-3748. https://doi.org/10.1103/physreva.33.3742
[8]  Ruggenthaler, M., Tan-cogne-Dejean, N., Flick, J., Appel, H. and Rubio, A. (2018) From a Quan-tum-Electrodynamical Light-Matter Description to Novel Spectroscopies. Nature Reviews Chemistry, 2, Article No. 0118. https://doi.org/10.1038/s41570-018-0118
[9]  Chipot, C. and Pohorille, A. (2007) Free Energy Calculations: Theory and Applications in Chemistry and Bi-ology. Springer.
[10]  Car, R. and Parrinello, M. (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters, 55, 2471-2474. https://doi.org/10.1103/physrevlett.55.2471
[11]  Yang, C. (2025) Beyond Exactness: Approximation Strategies to the Many-Body Schrödinger Equation for Modern Quantum Chemistry Applications. ChemRxiv.
[12]  McQuarrie, D.A. (2000) Statistical Mechanics. University Sci-ence Books.
[13]  Salam, A. (2015) Quantum Electrodynamics Effects in Atoms and Molecules. WIREs Computational Molecular Science, 5, 178-201. https://doi.org/10.1002/wcms.1211
[14]  Zhao, B., Han, S., Malbon, C.L., Manthe, U., Yarkony, D.R. and Guo, H. (2021) Full-dimensional Quantum Ste-reodynamics of the Non-Adiabatic Quenching of OH(A2Σ ) by H2. Nature Chem-istry, 13, 909-915. https://doi.org/10.1038/s41557-021-00730-1
[15]  Marx, D. and Hutter, J. (2000) Ab Initio Molecular Dynamics: Theory and Implementation. In: Groten-dorst, J., Ed., Modern Methods and Algorithms of Quantum Chemistry, John von Neumann Institute for Computing, 301-449.
[16]  Liang, J.Y. and Lipscomb, W.N. (1988) Hydration of CO2 by Carbonic Anhydrase: Intramolecular Proton Transfer between Zn2⁺-Bound H2O and Histidine 64 in Human Carbonic Anhy-drase II. Biochemistry, 27, 8676-8682.
[17]  Markland, T.E. and Ceriotti, M. (2018) Nuclear Quantum Effects Enter the Mainstream. Nature Reviews Chem-istry, 2, Article No. 0109. https://doi.org/10.1038/s41570-017-0109
[18]  Konecny, L., Kosheleva, V.P., Appel, H., Ruggenthaler, M. and Rubio, A. (2025) Relativistic Linear Re-sponse in Quantum-Electrodynamical Density Functional Theory. Physical Re-view X, 15, Article ID: 031052. https://doi.org/10.1103/ttc3-867m
[19]  Zee, A. (2010) Quantum Field Theory in a Nutshell. 2nd Edition, Princeton Univer-sity Press.
[20]  Shirts, M.R. and Chodera, J.D. (2008) Statistically Optimal Analysis of Samples from Multiple Equilibrium States. The Journal of Chemical Physics, 129, Article ID: 124105. https://doi.org/10.1063/1.2978177
[21]  Wang, L., Wu, Y., Deng, Y., Kim, B., Pierce, L., Krilov, G., et al. (2015) Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. Journal of the American Chemical Society, 137, 2695-2703. https://doi.org/10.1021/ja512751q
[22]  Piana, S., Lindorff-Larsen, K. and Shaw, D.E. (2012) Protein Folding Kinetics and Thermodynamics from Atomis-tic Simulation. Proceedings of the National Academy of Sciences, 109, 17845-17850. https://doi.org/10.1073/pnas.1201811109
[23]  Fernán-dez-Serra, M.V., Ferlat, G. and Artacho, E. (2005) Two Exchange-Correlation Functionals Compared for First-Principles Liquid Water. arXiv: cond-mat/0407724.
[24]  Ruden, T.A., Helgaker, T., Jørgensen, P. and Olsen, J. (2003) Coupled-Cluster Connected-Quadruples Corrections to Atomization En-ergies. The Journal of Chemical Physics, 118, 9208-9217.
[25]  Helgaker, T., Klopper, W., Koch, H. and Noga, J. (1997) Basis-set Convergence of Correlated Calculations on Water. The Journal of Chemical Physics, 106, 9639-9646. https://doi.org/10.1063/1.473863
[26]  Einstein, A. (1905) Zur Elektrody-namik bewegter Körper. Annalen der Physik, 322, 891-921. https://doi.org/10.1002/andp.19053221004
[27]  Padmanabhan,T. (2010) Gravitation: Foundations and Frontiers. Cambridge University Press.
[28]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W.H. Freeman.
[29]  Wald, R.M. (1984). General Relativity. University of Chi-cago Press. https://doi.org/10.7208/chicago/9780226870373.001.0001
[30]  Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley.
[31]  Pyykkö, P. (2012) The Physics behind Chem-istry and the Periodic Table. Chemical Reviews, 112, 371-384. https://doi.org/10.1021/cr200042e
[32]  Saue, T. and Visscher, L. (2003) Four-Component Electronic Structure Methods for Molecules. In: Progress in Theoretical Chemistry and Physics, Springer, 211-267. https://doi.org/10.1007/978-94-017-0105-1_6
[33]  Visscher, L. and Dyall, K.G. (1997) Dirac-Fock Atomic Electronic Structure Calculations Using Different Nuclear Charge Distributions. Atomic Data and Nuclear Data Tables, 67, 207-224. https://doi.org/10.1006/adnd.1997.0751
[34]  Liu, W., Kutzelnigg, W. and van Wüllen, C. (2000) Relativistic MCSCF by Means of Quasidegenerate Direct Perturbation Theory. II. Preliminary Applications. The Journal of Chemi-cal Physics, 112, 3559-3571. https://doi.org/10.1063/1.480510
[35]  Griffiths, D.J. (2013) Introduction to Electrodynamics. 4th Edition, Pearson.
[36]  Jackson, J.D. (1999) Classical Elec-trodynamics. 3rd Edition, Wiley.
[37]  Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G. (1997) Photons and Atoms: Introduction to Quantum Electrody-namics. Wiley.
[38]  Landau, L.D. and Lifshitz, E.M. (2000) The Classical Theory of Fields. 4th Edition, Butterworth-Heinemann.
[39]  Svendsen, M.K., Kurman, Y., Schmidt, P., Koppens, F., Kaminer, I. and Thygesen, K.S. (2021) Combining Density Functional Theory with Macroscopic QED for Quantum Light-Matter In-teractions in 2D Materials. Nature Communications, 12, Article No. 2778. https://doi.org/10.1038/s41467-021-23012-3
[40]  Weinberg, S. (2005) The Quantum Theory of Fields: Volume 2, Modern Applications. Cambridge Univer-sity Press.
[41]  Babiker, M. and Loudon, R. (1983) Derivation of the Pow-er-Zienau-Woolley Hamiltonian in Quantum Electrodynamics by Gauge Trans-formation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 385, 439-460. https://doi.org/10.1098/rspa.1983.0022
[42]  Power, E.A. and Zienau, S. (1971) Coulomb Gauge in Non-Relativistic Quantum Electrodynamics. Philo-sophical Transactions of the Royal Society A, 251, 427-454.
[43]  Craig, D.P. and Thirunamachandran, T. (1998) Molecular Quantum Electrodynamics. 2nd Edition, Dover Publications.
[44]  Helgaker, T., Coriani, S., Jørgensen, P., Kris-tensen, K., Olsen, J. and Ruud, K. (2012) Recent Advances in Wave Func-tion-Based Methods of Molecular-Property Calculations. Chemical Reviews, 112, 543-631. https://doi.org/10.1021/cr2002239
[45]  Flick, J., Ruggen-thaler, M., Appel, H. and Rubio, A. (2017) Atoms and Molecules in Cavities, from Weak to Strong Coupling in Quantum-Electrodynamics (QED) Chemistry. Proceedings of the National Academy of Sciences, 114, 3026-3034. https://doi.org/10.1073/pnas.1615509114
[46]  Flick, J., Appel, H., Ruggen-thaler, M. and Rubio, A. (2017) Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems. Journal of Chemical Theory and Computation, 13, 1616-1625. https://doi.org/10.1021/acs.jctc.6b01126
[47]  Yang, J., Ou, Q., Pei, Z., Wang, H., Weng, B., Shuai, Z., et al. (2021) Quantum-Electrodynamical Time-Dependent Density Functional Theory within Gaussian Atomic Basis. The Journal of Chemical Physics, 155, Article ID: 064107. https://doi.org/10.1063/5.0057542
[48]  Weinberg, S. (1995) The Quantum Theory of Fields, Volume I: Foundations. Cambridge University Press.
[49]  Fetter, A.L. and Walecka, J.D. (2003) Quantum Theory of Many-Particle Systems. Dover Publications.
[50]  Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum Information. 10th Anniversary Edition, Cambridge University Press.
[51]  Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory. Westview Press.
[52]  Ryder, L.H. (1996) Quantum Field Theory. 2nd Edition, Cambridge University Press. https://doi.org/10.1017/cbo9780511813900
[53]  Altland, A. and Simons, B.D. (2010) Condensed Matter Field Theory. 2nd Edition, Cambridge University Press. https://doi.org/10.1017/cbo9780511789984
[54]  Zinn-Justin, J. (2005) Path Integrals in Quantum Mechanics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198566748.001.0001
[55]  Bart-lett, R.J. and Musiał, M. (2007) Coupled-Cluster Theory in Quantum Chemistry. Reviews of Modern Physics, 79, 291-352. https://doi.org/10.1103/revmodphys.79.291
[56]  Sherrill, C.D., Takatani, T. and Hohenstein, E.G. (2009) An Assessment of Theoretical Methods for Non-bonded Interactions: Comparison to Complete Basis Set Limit Coupled-Cluster Potential Energy Curves for the Benzene Dimer, the Methane Dimer, Ben-zene-Methane, and Benzene-H2S. The Journal of Physical Chemistry A, 113, 10146-10159. https://doi.org/10.1021/jp9034375
[57]  Piecuch, P., Ku-charski, S.A. and Kowalski, K. (2001) Can Ordinary Single-Reference Cou-pled-Cluster Methods Describe the Potential Energy Curve of N2? The Renor-malized CCSDT(Q) Study. Chemical Physics Letters, 344, 176-184. https://doi.org/10.1016/s0009-2614(01)00759-x
[58]  Shepherd, J.J., Grü-neis, A., Booth, G.H., Kresse, G. and Alavi, A. (2012) Convergence of Many-Body Wave-Function Expansions Using a Plane-Wave Basis: From Homogeneous Elec-tron Gas to Solid State Systems. Physical Review B, 86, Article ID: 035111. https://doi.org/10.1103/physrevb.86.035111
[59]  Kurashige, Y. and Yanai, T. (2011) Second-Order Perturbation Theory with a Density Matrix Renormali-zation Group Self-Consistent Field Reference Function: Theory and Application to the Study of Chromium Dimer. The Journal of Chemical Physics, 135, Article ID: 094104. https://doi.org/10.1063/1.3629454
[60]  Cohen, A.J., Mo-ri-Sánchez, P. and Yang, W. (2012) Challenges for Density Functional Theory. Chemical Reviews, 112, 289-320. https://doi.org/10.1021/cr200107z
[61]  Sun, J., Ruzsinszky, A. and Perdew, J.P. (2015) Strongly Constrained and Appropriately Normed Semilocal Density Functional. Physical Review Letters, 115, Article ID: 036402. https://doi.org/10.1103/physrevlett.115.036402
[62]  Banks, T. (2015) Density Functional Theory for Field Theorists I. arXiv: 1503.02925.
[63]  Thiam, G., Rossi, R., Koch, H., Belpassi, L. and Ronca, E. (2025) A Comprehensive Theory for Relativistic Polaritonic Chemistry: A Four-Component Ab Initio Treatment of Molecular Systems Coupled to Quan-tum Fields. JACS Au, 5, 3775-3788. https://doi.org/10.1021/jacsau.5c00233
[64]  Yang, C. (2025) Advantage, Limitations, and Performance Insight of Commonly Used Computation Chemis-try Methods for Solvation Free Energy Estimation. ChemRxiv.
[65]  Yang, C. (2025) Review of the Latest Progress of AI and Machine Learning Methods in the Free Energy Kinetics Estimation and Synthesis Analysis for Organic Chemis-try Applications. Intelligent Pharmacy. (In Press) https://doi.org/10.1016/j.ipha.2025.10.001
[66]  Yang, C. (2025) Quantum Computing and Artificial Neural Network Methods in Approximating the Quan-tum Many-Body Fermion System for Modern Quantum Chemistry Applications. ChemRxiv.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133