全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Foundational Protocol for Reproducible Visualization in Multivariate Quantum Data

DOI: 10.4236/oalib.1114704, PP. 1-13

Subject Areas: Information retrieval, Big Data Search and Mining, Multimedia/Signal processing, Simulation/Analytical Evaluation of Communication Systems, Information and communication theory and algorithms

Keywords: Reproducible Visualization, Dimensionality Reduction, UMAP, Nonlinear Manifold Learning, Quantum Many-Body Data, High-Dimensional Data Analysis, Embedding Convergence, Scientific Visualization, Data Standardization

Full-Text   Cite this paper   Add to My Lib

Abstract

The visualization of high-dimensional data is a cornerstone of modern scientific inquiry, particularly in quantum physics, where complex non-linear interactions define system behavior. While linear dimensionality reduction methods provide mathematical guarantees of reproducibility, they fail to capture the intricate manifolds underlying such data. Non-linear techniques like Uniform Manifold Approximation and Projection (UMAP) are therefore essential, but their stochastic optimization introduces a fundamental challenge: the lack of reproducibility across independent runs. In this work, we introduce a foundational protocol to establish UMAP as a reproducible tool for scientific visualization. We define explicit, quantitative criteria for embedding convergence, requiring that repeated executions of UMAP under fixed parameters consistently produce a single connected embedding with zero variance in the number of connected components. This criterion transforms UMAP from an exploratory heuristic into a deterministic mapping procedure. Applying the protocol to high-dimensional multivariate quantum data, we demonstrate that feature standardization promotes rapid and consistent convergence at substantially smaller neighborhood sizes, whereas raw data require careful parameter tuning to achieve reproducibility. Our framework provides a rigorous methodological foundation for distinguishing robust visual structures from stochastic artifacts, elevating non-linear visualization to a reproducible component of the scientific process.

Cite this paper

Cristani, C. R. and Tessera, D. (2026). A Foundational Protocol for Reproducible Visualization in Multivariate Quantum Data. Open Access Library Journal, 13, e14704. doi: http://dx.doi.org/10.4236/oalib.1114704.

References

[1]  Bellman, R. (1966) Dynamic Programming. Science, 153, 34-37. https://doi.org/10.1126/science.153.3731.34
[2]  Libbrecht, M.W. and Noble, W.S. (2015) The Nature of Machine Learning in High-Dimensional Data. Nature Reviews Genetics, 16, 728-740.
[3]  Carrasquilla, J. and Melko, R.G. (2017) Machine Learning Phases of Matter. Nature Physics, 13, 431-434. https://doi.org/10.1038/nphys4035
[4]  Cunningham, J.P. and Ghahramani, Z. (2015) Linear Dimensionality Reduction: Survey, in-Sights, and Generalizations. Journal of Machine Learning Research, 16, 2859-2900.
[5]  Jolliffe, I.T. and Cadima, J. (2016) Principal Component Analysis: A Review and Recent Developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, Article 20150202. https://doi.org/10.1098/rsta.2015.0202
[6]  Moon, K.R., van Dijk, D., Wang, Z., Gigante, S., Burkhardt, D.B., Chen, W.S., et al. (2019) Visualizing Structure and Transitions in High-Dimensional Biological Data. Nature Biotechnol-ogy, 37, 1482-1492. https://doi.org/10.1038/s41587-019-0336-3
[7]  Hu, Q., Lu, X., Xue, Z. and Wang, R. (2025) Gene Regulatory Network Inference during Cell Fate Decisions by Perturbation Strategies. npj Systems Biology and Applications, 11, Article No. 23. https://doi.org/10.1038/s41540-025-00504-2
[8]  Brown, M.R., et al. (2025) Machine Learning the En-tanglement Spectrum of Disordered Quantum Spin Liquids. Physical Review X, 15, Article 021045.
[9]  Kim, B., Jin, J., Wang, Z., He, L., Christensen, T., Mele, E.J., et al. (2023) Three-Dimensional Nonlinear Optical Materials from Twisted Two-Dimensional Van Der Waals Interfaces. Nature Photonics, 18, 91-98. https://doi.org/10.1038/s41566-023-01318-6
[10]  Tenenbaum, J.B., Silva, V.D. and Langford, J.C. (2000) A Global Ge-ometric Framework for Nonlinear Dimensionality Reduction. Science, 290, 2319-2323. https://doi.org/10.1126/science.290.5500.2319
[11]  Roweis, S.T. and Saul, L.K. (2000) Nonlinear Dimensionality Reduc-tion by Locally Linear Embedding. Science, 290, 2323-2326. https://doi.org/10.1126/science.290.5500.2323
[12]  Van der Maaten, L. and Hinton, G. (2008) Visualizing Data Using T-Sne. Journal of Machine Learning Research, 9, 2579-2605.
[13]  McInnes, L., Healy, J., Saul, N. and Melville, J. (2018) UMAP: Uniform Manifold Approximation and Pro-jection for Dimension Reduction. Journal of Open Source Software, 3, Article 861. https://doi.org/10.21105/joss.00861
[14]  Chari, T. and Pachter, L. (2023) The Specious Art of Single-Cell Genomics. PLOS Computational Biology, 19, e1011288. https://doi.org/10.1371/journal.pcbi.1011288
[15]  Donaldcito, A., Smith, J., et al. (2022) Reproducibility of Machine Learning Algorithms in Single-Cell Data Analysis. Nature Methods, 19, 1047-1055.
[16]  Hsu, Y., Li, X., Deng, D. and Das Sarma, S. (2018) Machine Learning Many-Body Localization: Search for the Elusive Nonergodic Metal. Physical Review Letters, 121, Article 245701. https://doi.org/10.1103/physrevlett.121.245701
[17]  Beveridge, C., Hart, K., Cristani, C.R., Li, X., Barbierato, E. and Hsu, Y. (2025) Unsupervised Machine Learning for Detecting Mutual Independence among Eigenstate Regimes in Interacting Quasiperiodic Chains. Physical Review B, 111, L140202. https://doi.org/10.1103/physrevb.111.l140202
[18]  Li, H. and Haldane, F.D.M. (2008) Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States. Physical Review Letters, 101, Article 010504. https://doi.org/10.1103/physrevlett.101.010504

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133