全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Exploring AIGC-Aided Approaches to Multimodal Journalistic Discourse Teaching

DOI: 10.4236/oalib.1114694, PP. 1-9

Subject Areas: Language Education

Keywords: Foreign Language Education, Generative Artificial Intelligence (AIGC), Interpretive Image, Multimodal Teaching

Full-Text   Cite this paper   Add to My Lib

Abstract

With the rapid development of artificial intelligence technology, multimodality has been increasingly applied in the field of foreign language education. Considering the potential of AI-based text-to-image generation, this paper explores methods and pathways to optimize multimodal foreign language teaching, addressing the challenges in the application of multimodal discourse teaching in foreign language classrooms. For instance, some interpretive images are generated from text meanings in sociocultural discourse in order to design the multimodal interactive scenarios for teaching. This approach aims to create a richer, more intuitive and more lively experience of discourse meaning for both teachers and learners. The AI-based image-text interaction presented in this article can help deepen learners’ understanding of discourse and provide a useful reference for improving the effectiveness of multimodal teaching.

Cite this paper

Zhu, J. (2025). Exploring AIGC-Aided Approaches to Multimodal Journalistic Discourse Teaching. Open Access Library Journal, 12, e14694. doi: http://dx.doi.org/10.4236/oalib.1114694.

References

[1]  Bezemer, J. and Kress, G. (2016) Multimodality, Learning and Communication: A Social Semiotic Frame. Routledge.
[2]  Halliday, M.A.K. and Matthiessen, M.I.M. (2021) An Introduction to Functional Grammar. 3rd Edition, For-eign Language Teaching and Research Press.
[3]  Kress, G. and van Leeuwen, T. (1996) Reading Images: The Grammar of Visual Design. Routledge.
[4]  Kress, G. and van Leeuwen, T. (2001) Multimodal Discourse: The Modes and Media of Con-temporary Communication. Arnold.
[5]  Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. and Neubig, G. (2023) Pretrain, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys, 55, 1-35. https://doi.org/10.1145/3560815
[6]  Stein, P. (2000) Rethinking Resources: Multimodal Pedagogies in the ESL Classroom. TESOL Quarterly, 34, 333-336. https://doi.org/10.2307/3587958
[7]  何宁, 王守仁. 新文科、新外语、新导向——论外语专业人才培养的发展与创新[J]. 外语教育研究前沿, 2021, 4(4): 3-8 91.
[8]  焦建利, 陈婷. 大型语言模型赋能英语教学: 四个场景[J]. 外语电化教学, 2023(2): 12-17 106.
[9]  李战子, 范冰冰. 多模态教学图库的构建及课堂应用——以中美聚焦网图文类别分析为例[J]. 北京科技大学学报(社会科学版), 2021, 37(5): 511-517.
[10]  秦颖. 人机共生场景下的外语教学方法探索——以ChatGPT为例[J]. 外语电化教学, 2023(2): 24-29 108.
[11]  王慧君, 王海丽. 多模态视域下翻转课堂教学模式研究[J]. 电化教育研究, 2015, 36(12): 70-76.
[12]  文秋芳, 梁茂成. 人机互动协商能力: ChatGPT与外语教育[J]. 外语教学与研究, 2024, 56(2): 286-296 321.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133