全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Epigenetic Markers in Criminal Investigation: A Narrative Synthesis of Recent Evidence

DOI: 10.4236/oalib.1114662, PP. 1-15

Subject Areas: Genetics

Keywords: Epigenomics, DNA Methylation, microRNAs, Forensic Genetics, Biomarkers

Full-Text   Cite this paper   Add to My Lib

Abstract

Forensic epigenetics has become a rapidly expanding frontier in molecular forensics, offering analytical capabilities that surpass those of traditional genetic markers. Advances in high-resolution methylome profiling, small-RNA analysis, and multi-omics approaches now support increasingly precise inferences about biological age, tissue origin, lifestyle exposures, and, in some cases, individual differentiation. Despite this progress, the field remains transitional, and its adoption in routine forensic practice requires methodological standardization, analytical validation, and legal evaluation. This narrative review synthesizes findings from studies indexed in PubMed, Scopus, and Web of Science, of which 61 met the eligibility criteria after duplicate removal and full-text assessment. These studies were categorized according to epigenetic mechanism, forensic application, methodological design, technological innovation, and legal or operational considerations. DNA methylation emerged as the most extensively explored mechanism, particularly for age estimation, body-fluid identification, and differentiation of monozygotic twins. MicroRNAs constituted the second most frequently examined biomarker class, demonstrating high stability in degraded samples and strong tissue specificity, with applications in postmortem interval estimation and cause-of-death assessment. Histone modifications were investigated less often due to technical challenges related to protein instability and environmental degradation. Across mechanisms, limited standardization in sampling, extraction, sequencing, and computational modeling remains a major barrier to reproducibility. Nevertheless, recent advances—including third-generation sequencing, refined methylation assays, and machine-learning frameworks integrating complex epigenomic and tran-scriptomic signals—suggest substantial future potential. Persistent legal challenges, particularly related to validation, error-rate determination, and privacy concerns, highlight the need for caution. Overall, forensic epigenetics is progressing toward broader applicability, provided ethical, legal, and methodological frameworks evolve in parallel.

Cite this paper

Tosta, E. F. , Oliveira, Í. R. R. D. , Martins, M. D. D. P. , Antô, L. , Loza, N. R. R. , Rezende, A. J. C. , Moraes, S. P. D. , Silva, V. S. and Oliveira, F. M. D. (2026). Epigenetic Markers in Criminal Investigation: A Narrative Synthesis of Recent Evidence. Open Access Library Journal, 13, e14662. doi: http://dx.doi.org/10.4236/oalib.1114662.

References

[1]  Sarkies, P. (2020) Molecular Mechanisms of Epigenetic Inheritance: Possible Evolutionary Implications. Seminars in Cell & Developmental Biology, 97, 106-115. https://doi.org/10.1016/j.semcdb.2019.06.005
[2]  Bergsma, T. and Rogaeva, E. (2020) DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neuroscience Insights, 15, 1-11. https://doi.org/10.1177/2633105520942221
[3]  Dai, W., Qiao, X., Fang, Y., Guo, R., Bai, P., Liu, S., et al. (2024) Epigenetics-Targeted Drugs: Current Para-digms and Future Challenges. Signal Transduction and Targeted Therapy, 9, Article No. 332. https://doi.org/10.1038/s41392-024-02039-0
[4]  Nicolella, H.D. and de Assis, S. (2022) Epigenetic Inheritance: Intergenerational Effects of Pesticides and Other Endocrine Disruptors on Cancer Development. Interna-tional Journal of Molecular Sciences, 23, Article 4671. https://doi.org/10.3390/ijms23094671
[5]  Real, á.D., Santurtún, A. and Teresa Zarrabeitia, M. (2021) Epigenetic Related Changes on Air Quality. Envi-ronmental Research, 197, Article 111155. https://doi.org/10.1016/j.envres.2021.111155
[6]  Haddrill, P.R. (2021) Developments in Forensic DNA Analysis. Emerging Topics in Life Sciences, 5, 381-393. https://doi.org/10.1042/etls20200304
[7]  Gerra, M.C., Dallabona, C. and Cecchi, R. (2024) Epigenetic Analyses in Forensic Medicine: Future and Challenges. International Journal of Legal Medicine, 138, 701-719. https://doi.org/10.1007/s00414-024-03165-8
[8]  Previderè, C., Bonin, S., Cuttaia, C., Argentiero, G., Livieri, T., Cecchetto, G., et al. (2025) Are Pre-Analytical Factors Fully Considered in Forensic FFPE Molecular Analyses? A Systematic Review Reveals the Need for Standardised Procedures. International Journal of Legal Medicine, 139, 1439-1452. https://doi.org/10.1007/s00414-025-03480-8
[9]  Dash, H.R. and Arora, M. (2022) CRISPR-CasB Technology in Forensic DNA Analysis: Challenges and So-lutions. Applied Microbiology and Biotechnology, 106, 4367-4374. https://doi.org/10.1007/s00253-022-12016-8
[10]  Bonfiglio, F., Legati, A., Lasorsa, V.A., Palombo, F., De Riso, G., Isidori, F., et al. (2024) Best Practices for Germline Variant and DNA Methylation Analysis of Second- and Third-Generation Sequencing Data. Human Genomics, 18, Article No. 120. https://doi.org/10.1186/s40246-024-00684-8
[11]  Li, Y., Goodrich, J.M., Pe-terson, K.E., Song, P.X. and Luo, L. (2025) Uncertainty Quantification in Epige-netic Clocks via Conformalized Quantile Regression. Genetic Epidemiology, 49, e70008. https://doi.org/10.1002/gepi.70008
[12]  Zaguia, A., Pandey, D., Painuly, S., Pal, S.K., Garg, V.K. and Goel, N. (2022) DNA Methylation Bi-omarkers-Based Human Age Prediction Using Machine Learning. Computational Intelligence and Neuroscience, 2022, Article ID: 8393498. https://doi.org/10.1155/2022/8393498
[13]  Mathew, J.A., Paul, G., Jacob, J., Kumar, J., Dubey, N. and Philip, N.S. (2025) A New Robust AI/ML Based Model for Accurate Forensic Age Estimation Using DNA Methylation Markers. Forensic Science, Medicine and Pathology, 21, 1145-1162. https://doi.org/10.1007/s12024-025-00985-x
[14]  Ambroa-Conde, A., Gi-rón-Santamaría, L., Mosquera-Miguel, A., Phillips, C., Casares de Cal, M.A., Gómez-Tato, A., et al. (2022) Epigenetic Age Estimation in Saliva and in Buccal Cells. Forensic Science International: Genetics, 61, Article 102770. https://doi.org/10.1016/j.fsigen.2022.102770
[15]  Beentjes, I., Haagmans, M.A., de Bruin, D.D.S.H., Permana, A., Pośpiech, E., Branicki, W., et al. (2026) DNA Methylation-Based Forensic Framework for Age Prediction and Body Fluid Identification Using Nanopore Sequencing. Forensic Science International: Ge-netics, 81, Article 103370. https://doi.org/10.1016/j.fsigen.2025.103370
[16]  Kader, F., Ghai, M. and Olaniran, A.O. (2019) Characterization of DNA Methylation-Based Markers for Human Body Fluid Identification in Forensics: A Critical Review. International Journal of Legal Medicine, 134, 1-20. https://doi.org/10.1007/s00414-019-02181-3
[17]  Song, B., Qian, J. and Fu, J. (2023) Research Progress and Potential Application of MicroRNA and Other Non-Coding RNAs in Forensic Medicine. International Journal of Legal Medicine, 138, 329-350. https://doi.org/10.1007/s00414-023-03091-1
[18]  van Dongen, J., Willemsen, G., de Geus, E.J., Boomsma, D.I. and Neale, M.C. (2023) Effects of Smoking on Genome-Wide DNA Methylation Profiles: A Study of Dis-cordant and Concordant Monozygotic Twin Pairs. eLife, 12, e83286. https://doi.org/10.7554/elife.83286
[19]  Lee, H., Lee, E.J., Park, K., Lee, D.G., Kim, A.Y., Park, S., et al. (2025) MicroRNA Transcriptome Analysis for Post-Mortem Interval Estimation. Forensic Science International, 370, Article 112473. https://doi.org/10.1016/j.forsciint.2025.112473
[20]  Scopetti, M., Padovano, M., Manetti, F., Di Fazio, N., Radaelli, D., D’Errico, S., et al. (2023) Molecular Autopsy in Asphyxia Deaths: Diagnostic Perspectives of MiRNAs in the Evaluation of Hypoxia Response. International Journal of Medical Sciences, 20, 749-753. https://doi.org/10.7150/ijms.79539
[21]  Ferreira, M.R., Car-ratto, T.M.T., Frontanilla, T.S., Bonadio, R.S., Jain, M., de Oliveira, S.F., et al. (2025) Advances in Forensic Genetics: Exploring the Potential of Long Read Sequencing. Forensic Science International: Genetics, 74, Article 103156. https://doi.org/10.1016/j.fsigen.2024.103156
[22]  McSwiggin, H., Magalhães, R., Nilsson, E.E., Yan, W. and Skinner, M.K. (2024) Epigenetic Transgenerational Inheritance of Toxicant Exposure-Specific Non-Coding RNA in Sperm. Environmental Epigenetics, 10, dvae014. https://doi.org/10.1093/eep/dvae014
[23]  Foox, J., Bezdan, D., Vijay, P., Getz, K., Ratanachai, K., Davis, J.W., et al. (2021) Epigenetic Forensics for Suspect Identification and Age Prediction. Forensic Genomics, 1, 83-86. https://doi.org/10.1089/forensic.2021.0005
[24]  Lee, S.M., Loo, C.E., Prasasya, R.D., Bartolomei, M.S., Kohli, R.M. and Zhou, W. (2024) Low-Input and Single-Cell Methods for Infinium DNA Methylation Beadchips. Nucleic Acids Research, 52, e38-e38. https://doi.org/10.1093/nar/gkae127
[25]  Li, Y., Wang, Z., Ishmael, D. and Lvy, Y. (2023) The Potential of Using Non-Coding RNAs in Forensic Science Applications. Forensic Sciences Research, 8, 98-106. https://doi.org/10.1093/fsr/owad003
[26]  Yang, S., Chen, L., Lin, M., Shen, C. and Reheman, A. (2025) Histone Modifications as Individual-Specific Epigenetic Regulators: Opportunities for Forensic Genetics and Postmortem Analysis. Genes, 16, Article 940. https://doi.org/10.3390/genes16080940
[27]  Srirangarajan, S., Sindhu, V., Raju, S., Rao, R.J., Prabhu, S. and Rudresh, V. (2021) Evaluation of Gingival Tissue Samples for Predicting the Time of Death Using Histological and Bio-chemical Tests. Forensic Science International, 324, Article 110850. https://doi.org/10.1016/j.forsciint.2021.110850
[28]  Procopio, N. and Bonicelli, A. (2024) From Flesh to Bones: Multi‐Omics Approaches in Forensic Science. Proteomics, 24, e2200335. https://doi.org/10.1002/pmic.202200335
[29]  Syvänen, A. (2024) From Early Methods for DNA Diagnostics to Genomes and Epigenomes at High Resolu-tion during Four Decades—A Personal Perspective. Upsala Journal of Medical Sciences, 129, e11134. https://doi.org/10.48101/ujms.v129.11134
[30]  Loyfer, N., Magenheim, J., Peretz, A., Cann, G., Bredno, J., Klochendler, A., et al. (2023) A DNA Methyla-tion Atlas of Normal Human Cell Types. Nature, 613, 355-364. https://doi.org/10.1038/s41586-022-05580-6
[31]  Bock, S.L., Smaga, C.R., McCoy, J.A. and Parrott, B.B. (2022) Genome‐Wide DNA Methylation Patterns Harbour Signatures of Hatchling Sex and Past Incubation Temperature in a Species with Environmental Sex Determination. Molecular Ecology, 31, 5487-5505. https://doi.org/10.1111/mec.16670
[32]  Marcante, B., Marino, L., Cattaneo, N.E., Delicati, A., Tozzo, P. and Caenazzo, L. (2025) Advancing Fo-rensic Human Chronological Age Estimation: Biochemical, Genetic, and Epige-netic Approaches from the Last 15 Years: A Systematic Review. International Journal of Molecular Sciences, 26, Article No. 3158. https://doi.org/10.3390/ijms26073158
[33]  Mirzakhani, H. (2024) From Womb to Wellness: Early Environmental Exposures, Cord Blood DNA Methyla-tion and Disease Origins. Epigenomics, 16, 1175-1183. https://doi.org/10.1080/17501911.2024.2390823
[34]  Mulder, R.H., Neu-mann, A., Cecil, C.A.M., Walton, E., Houtepen, L.C., Simpkin, A.J., et al. (2021) Epigenome-Wide Change and Variation in DNA Methylation in Childhood: Tra-jectories from Birth to Late Adolescence. Human Molecular Genetics, 30, 119-134. https://doi.org/10.1093/hmg/ddaa280
[35]  Bernini Di Michele, A., Onofri, V., Pesaresi, M. and Turchi, C. (2023) The Role of Mirna Expression Pro-file in Sudden Cardiac Death Cases. Genes, 14, Article 1954. https://doi.org/10.3390/genes14101954
[36]  Colicino, E., Just, A., Kiou-mourtzoglou, M., Vokonas, P., Cardenas, A., Sparrow, D., et al. (2019) Blood DNA Methylation Biomarkers of Cumulative Lead Exposure in Adults. Journal of Exposure Science & Environmental Epidemiology, 31, 108-116. https://doi.org/10.1038/s41370-019-0183-9
[37]  Aliferi, A., Sundaram, S., Ballard, D., Freire-Aradas, A., Phillips, C., Lareu, M.V., et al. (2022) Combining Current Knowledge on DNA Methylation-Based Age Estimation Towards the Development of a Superior Forensic DNA Intelligence Tool. Forensic Science In-ternational: Genetics, 57, Article 102637. https://doi.org/10.1016/j.fsigen.2021.102637
[38]  Kumar, M. and Rani, K. (2023) Epigenomics in Stress Tolerance of Plants under the Climate Change. Molecular Biology Reports, 50, 6201-6216. https://doi.org/10.1007/s11033-023-08539-6
[39]  Paparazzo, E., Lagani, V., Geracitano, S., Citrigno, L., Aceto, M.A., Malvaso, A., et al. (2023) An ELOVL2-Based Epigenetic Clock for Forensic Age Prediction: A Systematic Re-view. International Journal of Molecular Sciences, 24, Article 2254. https://doi.org/10.3390/ijms24032254
[40]  Scientific Working Group on DNA Analysis Methods (SWGDAM) (2020) SWGDAM Validation Guidelines for DNA Analysis Methods. https://www.swgdam.org/ 
[41]  Mohammad, G.S., Joca, S. and Starnawska, A. (2022) The Cannabis-Induced Epigenetic Regula-tion of Genes Associated with Major Depressive Disorder. Genes, 13, Article 1435. https://doi.org/10.3390/genes13081435
[42]  Charles, S. and Jonck-heere, A. (2022) The Use and Understanding of Forensic Reports by Judicial Actors—The Field of Gunshot Residue Expertise as an Example. Forensic Sci-ence International, 335, Article 111312. https://doi.org/10.1016/j.forsciint.2022.111312
[43]  Martire, K.A., Chin, J.M., Davis, C., Edmond, G., Growns, B., Gorski, S., et al. (2024) Understanding ‘Error’ in the Forensic Sciences: A Primer. Forensic Science International: Syn-ergy, 8, Article 100470. https://doi.org/10.1016/j.fsisyn.2024.100470
[44]  Martínez-Enguita, D., Hillerton, T., Åkesson, J., Kling, D., Lerm, M. and Gustafsson, M. (2025) Precise and Interpretable Neural Networks Reveal Epigenetic Signatures of Aging across Youth in Health and Disease. Frontiers in Aging, 5, Article ID: 1526146. https://doi.org/10.3389/fragi.2024.1526146
[45]  Thakali, K.M., Zhong, Y., Cleves, M., Andres, A. and Shankar, K. (2020) Associations between Maternal Body Mass Index and Diet Composition with Placental DNA Methylation at Term. Placenta, 93, 74-82. https://doi.org/10.1016/j.placenta.2020.02.018
[46]  van der Wijst, M., de Vries, D., Groot, H., Trynka, G., Hon, C., Bonder, M., et al. (2020) The Single-Cell Eqtlgen Consortium. eLife, 9, e52155. https://doi.org/10.7554/elife.52155
[47]  Allwood, J.S., Fierer, N. and Dunn, R.R. (2020) The Future of Environmental DNA in Forensic Science. Applied and Environmental Microbiology, 86, e01504-19. https://doi.org/10.1128/aem.01504-19
[48]  Das, S. and Teoh, S.L. (2022) Micrornas in Various Body Fluids and Their Importance in Forensic Medicine. Mini-Reviews in Medicinal Chemistry, 22, 2332-2343. https://doi.org/10.2174/1389557522666220303141558
[49]  Kim, B.M., Park, S.U., Schmelzer, L., Yang, S., Lee, S.D., Kim, M., et al. (2024) DNA Methyl-ation-Based Organ Tissue Identification: Marker Identification, Snapshot Multi-plex Assay Development, and Interlaboratory Comparison. Forensic Science In-ternational: Genetics, 71, Article 103052. https://doi.org/10.1016/j.fsigen.2024.103052
[50]  Yamagishi, T., Sakurai, W., Watanabe, K., Toyomane, K. and Akutsu, T. (2024) Development and Comparison of Forensic Interval Age Prediction Models by Statistical and Ma-chine Learning Methods Based on the Methylation Rates of ELOVL2 in Blood DNA. Forensic Science International: Genetics, 69, Article 103004. https://doi.org/10.1016/j.fsigen.2023.103004
[51]  Hoang, T.T., Lee, Y., McCartney, D.L., Kersten, E.T.G., Page, C.M., Hulls, P.M., et al. (2024) Compre-hensive Evaluation of Smoking Exposures and Their Interactions on DNA Meth-ylation. eBioMedicine, 100, Article 104956. https://doi.org/10.1016/j.ebiom.2023.104956
[52]  Watanabe, K. and Aku-tsu, T. (2020) Evaluation of a Co-Extraction Kit for Mrna, Mirna and DNA Methylation-Based Body Fluid Identification. Legal Medicine, 42, Article 101630. https://doi.org/10.1016/j.legalmed.2019.101630
[53]  Saddiki, H., Colicino, E. and Lesseur, C. (2022) Assessing Differential Variability of High-Throughput DNA Methylation Data. Current Environmental Health Re-ports, 9, 625-630. https://doi.org/10.1007/s40572-022-00374-4
[54]  Ayub, A.M., Syed, F.R. and Peng, H. (2025) Breaking Barriers: The Admissibility of Forensic Evidence in US Courts and the Struggles with Cutting-Edge Science. Science & Justice, 65, Article 101355. https://doi.org/10.1016/j.scijus.2025.101355
[55]  Searle, B., Müller, M., Carell, T. and Kellett, A. (2023) Third‐Generation Sequencing of Epigenetic DNA. Angewandte Chemie International Edition, 62, e202215704. https://doi.org/10.1002/anie.202215704
[56]  de Bruin, D.D.S.H., Haagmans, M.A., van der Gaag, K.J., Hoogenboom, J., Weiler, N.E.C., Tesi, N., et al. (2025) Exploring Nanopore Direct Sequencing Performance of Forensic STRs, SNPs, InDels, and DNA Methylation Markers in a Single Assay. Forensic Science Inter-national: Genetics, 74, Article 103154. https://doi.org/10.1016/j.fsigen.2024.103154
[57]  Varshavsky, M., Harari, G., Glaser, B., Dor, Y., Shemer, R. and Kaplan, T. (2023) Accurate Age Prediction from Blood Using a Small Set of DNA Methylation Sites and a Cohort-Based Ma-chine Learning Algorithm. Cell Reports Methods, 3, Article 100567. https://doi.org/10.1016/j.crmeth.2023.100567
[58]  Kim, S., Qin, Y., Park, H.J., Bohn, R.I.C., Yue, M., Xu, Z., et al. (2024) MOSES: A Methylation-Based Gene Association Approach for Unveiling Environmentally Regulated Genes Linked to a Trait or Disease. Clinical Epigenetics, 16, Article No. 161. https://doi.org/10.1186/s13148-024-01776-x
[59]  Levy, J.J., Diallo, A.B., Saldias Montivero, M.K., Gabbita, S., Salas, L.A. and Christensen, B.C. (2024) Insights to Aging Prediction with AI Based Epigenetic Clocks. Epigenomics, 17, 49-57. https://doi.org/10.1080/17501911.2024.2432854
[60]  Ruden, D.M. (2025) The Emerging Role of Multiomics in Aging Research. Epigenomics, 17, 897-904. https://doi.org/10.1080/17501911.2025.2533111
[61]  Anderson, J.A., Johnston, R.A., Lea, A.J., Campos, F.A., Voyles, T.N., Akinyi, M.Y., et al. (2021) High Social Status Males Experience Accelerated Epigenetic Aging in Wild Baboons. eLife, 10, e66128. https://doi.org/10.7554/elife.66128

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133