Bipolar disorder (BD) is characterized by recurrent transitions between manic, depressive, and euthymic states, yet continuous symptom monitoring remains a major clinical challenge. We present a multimodal digital phenotyping framework for fine-grained BD mood-state classification and relapse-risk monitoring using naturalistic facial video, voice audio, and phone-usage metadata. The proposed architecture employs modality-specific encoders with late-fusion logits to learn disentangled representations of affective, prosodic, and behavioural signals. Across a moderately imbalanced but clinically representative dataset, the model achieves near-perfect validation performance, including a 100% final accuracy and a strictly diagonal confusion matrix, indicating complete separation between euthymic, depressive, and manic classes. t-SNE visualizations show well-defined clusters at the embedding level for each individual modality and even tighter grouping in the fused representation, suggesting robust cross-modal alignment. An ablation analysis confirms that facial affect provides the strongest single-modality predictive signal (98.8% accuracy), while combining voice and facial features yields the highest bi-modal performance (99.0%), closely followed by the full multimodal system (98.5%). We further demonstrate a relapse-risk layer that transforms predicted mood probabilities into a continuous risk score, triggering alerts when a calibrated clinical threshold is crossed. Although the results are strong, we critically examine the possibility of data leakage and overfitting underlying “perfect” validation learning curves. To ensure realistic clinical utility, we outline subject-wise evaluation, temporal blocking, calibration strategies, and privacy-preserving deployment considerations. Class proportions (euthymic ≈ 1000, depressive ≈ 534, manic ≈ 468) reflect real-world prevalence patterns rather than strict balance. Overall, our findings highlight the promise of low-burden multi-modal monitoring for BD while emphasizing the methodological rigor and safeguards required for real-world translation.
Cite this paper
Filippis, R. D. and Foysal, A. A. (2025). Multimodal Digital Phenotyping for Bipolar Disorder: Robust Mood-State Classification and Early Relapse Risk Monitoring. Open Access Library Journal, 12, e14600. doi: http://dx.doi.org/10.4236/oalib.1114600.
Tondo, L., Vazquez, G. and Baldessarini, R. (2017) Depression and Mania in Bipolar Disorder. Current Neuropharmacology, 15, 353-358. https://doi.org/10.2174/1570159x14666160606210811
McIntyre, R.S. and Calabrese, J.R. (2019) Bipolar Depression: The Clinical Characteristics and Unmet Needs of a Complex Disorder. Current Medi-cal Research and Opinion, 35, 1993-2005. https://doi.org/10.1080/03007995.2019.1636017
Gilbert, A., Sebag-Montefiore, D., Davidson, S. and Velikova, G. (2015) Use of Pa-tient-Reported Outcomes to Measure Symptoms and Health Related Quality of Life in the Clinic. Gynecologic Oncology, 136, 429-439. https://doi.org/10.1016/j.ygyno.2014.11.071
Ebner-Priemer, U.W. and Trull, T.J. (2009) Ambulatory Assessment: An Innovative and Promising Ap-proach for Clinical Psychology. European Psychologist, 14, 109-119. https://doi.org/10.1027/1016-9040.14.2.109
Conner, T.S. and Barrett, L.F. (2012) Trends in Ambulatory Self-Report: The Role of Momentary Experi-ence in Psychosomatic Medicine. Psychosomatic Medicine, 74, 327-337. https://doi.org/10.1097/psy.0b013e3182546f18
Reichert, D., Brüßler, S., Reichert, M. and Ebner-Priemer, U. (2024) Understanding Alcohol Consump-tion and Its Antecedents and Consequences in Daily Life: The Why and the How. In: Sommer, W.H. and Spanagel, R., Eds., Behavioral Neuroscience of Al-cohol Addiction, Springer, 453-474. https://doi.org/10.1007/7854_2024_486
Ben-Zeev, D., Froun-felker, R., Morris, S.B. and Corrigan, P.W. (2012) Predictors of Self-Stigma in Schizophrenia: New Insights Using Mobile Technologies. Journal of Dual Diagno-sis, 8, 305-314. https://doi.org/10.1080/15504263.2012.723311
Onnela, J. and Rauch, S.L. (2016) Harnessing Smartphone-Based Digital Phenotyping to Enhance Be-havioral and Mental Health. Neuropsychopharmacology, 41, 1691-1696. https://doi.org/10.1038/npp.2016.7
Bufano, P., Laurino, M., Said, S., Tognetti, A. and Menicucci, D. (2023) Digital Phenotyping for Monitoring Men-tal Disorders: Systematic Review. Journal of Medical Internet Research, 25, e46778. https://doi.org/10.2196/46778
Mendes, J.P.M., Moura, I.R., Van de Ven, P., Viana, D., Silva, F.J.S., Coutinho, L.R., et al. (2022) Sensing Apps and Public Data Sets for Digital Phenotyping of Mental Health: Systematic Re-view. Journal of Medical Internet Research, 24, e28735. https://doi.org/10.2196/28735
Gomes, N., Pato, M., Lourenço, A.R. and Datia, N. (2023) A Survey on Wearable Sensors for Mental Health Monitoring. Sensors, 23, 1330. https://doi.org/10.3390/s23031330
Onnela, J. (2020) Opportunities and Challenges in the Collection and Analysis of Digital Phenotyping Data. Neuropsychopharmacology, 46, 45-54. https://doi.org/10.1038/s41386-020-0771-3
C., K. (2024) AI Influence for Revolutionizing Virtual Reality (VR) Therapy. In: Advances in Business Strategy and Competitive Advantage, IGI Global, 217-241. https://doi.org/10.4018/979-8-3693-3498-0.ch010
Sonntag, D. (2019) Medical and Health Systems. The Handbook of Multimodal-Multisensor Inter-faces: Language Processing, Software, Commercialization, and Emerging Direc-tions, 3, 423-476. https://doi.org/10.1145/3233795.3233808
Dang, T., Spathis, D., Ghosh, A. and Mascolo, C. (2023) Human-Centred Artificial Intelli-gence for Mobile Health Sensing: Challenges and Opportunities. Royal Society Open Science, 10, Article ID: 230806. https://doi.org/10.1098/rsos.230806
Aung, M.S.H., Alquaddoomi, F., Hsieh, C., Rabbi, M., Yang, L., Pollak, J.P., et al. (2016) Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain. IEEE Journal of Se-lected Topics in Signal Processing, 10, 962-974. https://doi.org/10.1109/jstsp.2016.2565381
Chan, J., Goel, M., Gollako-ta, S. and Nandakumar, R. (2025) Mobile Medical Systems for Equitable Healthcare. Nature Reviews Bioengineering, 3, 855-874.
Kumar, R.M.R. and Joghee, S. (2025) A Review on Integrating Breast Cancer Clinical Data: A Unified Platform Perspective. Current Treatment Options in Oncology, 26, 1-13. https://doi.org/10.1007/s11864-024-01285-2
Xu, X., Li, J., Zhu, Z., Zhao, L., Wang, H., Song, C., et al. (2024) A Comprehensive Review on Syn-ergy of Multi-Modal Data and AI Technologies in Medical Diagnosis. Bioengi-neering, 11, Article 219. https://doi.org/10.3390/bioengineering11030219
Isavand, P., Aghamiri, S.S. and Amin, R. (2024) Applications of Multimodal Artificial Intelli-gence in Non-Hodgkin Lymphoma B Cells. Biomedicines, 12, Article 1753. https://doi.org/10.3390/biomedicines12081753
Chaabene, S., Boudaya, A., Bouaziz, B. and Chaari, L. (2025) An Overview of Methods and Techniques in Multimodal Data Fusion with Application to Healthcare. International Journal of Data Science and Analytics, 20, 3093-3117. https://doi.org/10.1007/s41060-025-00715-0
Al-Zoghby, A.M., Ismail Ebada, A., Saleh, A.S., Abdelhay, M. and Awad, W.A. (2025) A Comprehensive Review of Multimodal Deep Learning for Enhanced Medical Diagnostics. Com-puters, Materials & Continua, 84, 4155-4193. https://doi.org/10.32604/cmc.2025.065571
Martínez-García, M. and Hernández-Lemus, E. (2022) Data Integration Challenges for Machine Learning in Precision Medicine. Frontiers in Medicine, 8, Article 784455. https://doi.org/10.3389/fmed.2021.784455
Dunster, G.P., Swendsen, J. and Merikangas, K.R. (2020) Real-Time Mobile Monitoring of Bipolar Disorder: A Review of Evidence and Future Directions. Neuropsychopharmacology, 46, 197-208. https://doi.org/10.1038/s41386-020-00830-5
Milic, J., Zrnic, I., Grego, E., Jovic, D., Stankovic, V., Djurdjevic, S., et al. (2025) The Role of Arti-ficial Intelligence in Managing Bipolar Disorder: A New Frontier in Patient Care. Journal of Clinical Medicine, 14, Article 2515. https://doi.org/10.3390/jcm14072515
de Azevedo Cardoso, T., Kochhar, S., Torous, J. and Morton, E. (2024) Digital Tools to Facilitate the De-tection and Treatment of Bipolar Disorder: Key Developments and Future Di-rections. JMIR Mental Health, 11, e58631. https://doi.org/10.2196/58631
Chen, K., Torous, J. and Cheong, J. (2025) The Current State/Trends in Digital Phenotyping for Mental Health Re-search and Care. Psychiatric Clinics of North America. https://doi.org/10.1016/j.psc.2025.08.019
Seppälä, J., De Vita, I., Jämsä, T., Miettunen, J., Isohanni, M., Rubinstein, K., et al. (2019) Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review. JMIR Mental Health, 6, e9819. https://doi.org/10.2196/mental.9819
Sheikh, M., Qassem, M. and Kyri-acou, P.A. (2021) Wearable, Environmental, and Smartphone-Based Passive Sensing for Mental Health Monitoring. Frontiers in Digital Health, 3, Article 662811. https://doi.org/10.3389/fdgth.2021.662811
Aledavood, T., Torous, J., Triana Hoyos, A.M., Naslund, J.A., Onnela, J. and Keshavan, M. (2019) Smartphone-Based Tracking of Sleep in Depression, Anxiety, and Psy-chotic Disorders. Current Psychiatry Reports, 21, Article No. 49. https://doi.org/10.1007/s11920-019-1043-y
Amin, R., Schreynemack-ers, S., Oppenheimer, H., Petrovic, M., Hegerl, U. and Reich, H. (2025) Use of Mobile Sensing Data for Longitudinal Monitoring and Prediction of Depression Severity: Systematic Review. Journal of Medical Internet Research, 27, e57418. https://doi.org/10.2196/57418
Ghazouani, H. (2023) Challenges and Emerging Trends for Machine Reading of the Mind from Facial Expressions. SN Computer Science, 5, Article No. 103. https://doi.org/10.1007/s42979-023-02447-z
Mukku, L. and Thomas, J. (2023) A Review of Deep Learning Methods in Automatic Facial Mi-cro-Expression Recognition. In: Lecture Notes on Data Engineering and Com-munications Technologies, Springer Nature Singapore, 1-16. https://doi.org/10.1007/978-981-99-0609-3_1
Kaczmarek‐Majer, K., Dominiak, M., Antosik, A.Z., Hryniewicz, O., Kamińska, O., Opara, K., et al. (2024) Acoustic Features from Speech as Markers of Depressive and Manic Symptoms in Bipolar Disorder: A Prospective Study. Acta Psychiatrica Scandina-vica, 151, 358-374. https://doi.org/10.1111/acps.13735
Menne, F., Dörr, F., Schräder, J., Tröger, J., Habel, U., König, A., et al. (2024) The Voice of Depression: Speech Features as Biomarkers for Major Depressive Disorder. BMC Psychiatry, 24, Article No. 794. https://doi.org/10.1186/s12888-024-06253-6
Kamińska, D., Kamińska, O., Sochacka, M. and Sokół-Szawłowska, M. (2024) The Role of Selected Speech Signal Characteristics in Discriminating Unipolar and Bipolar Disorders. Sensors, 24, Article 4721. https://doi.org/10.3390/s24144721
Wanderley Espi-nola, C., Gomes, J.C., Mônica Silva Pereira, J. and dos Santos, W.P. (2022) Detec-tion of Major Depressive Disorder, Bipolar Disorder, Schizophrenia and Gener-alized Anxiety Disorder Using Vocal Acoustic Analysis and Machine Learning: An Exploratory Study. Research on Biomedical Engineering, 38, 813-829. https://doi.org/10.1007/s42600-022-00222-2
Sweeney, K.T., Ayaz, H., Ward, T.E., Izzetoglu, M., McLoone, S.F. and Onaral, B. (2012) A Methodology for Validating Artifact Removal Techniques for Physiological Signals. IEEE Transactions on Information Technology in Biomedicine, 16, 918-926. https://doi.org/10.1109/titb.2012.2207400
Esbensen, K.H. and Geladi, P. (2010) Principles of Proper Validation: Use and Abuse of Re-Sampling for Validation. Journal of Chemometrics, 24, 168-187. https://doi.org/10.1002/cem.1310
Peters, F.T., Drummer, O.H. and Musshoff, F. (2007) Validation of New Methods. Forensic Science International, 165, 216-224. https://doi.org/10.1016/j.forsciint.2006.05.021
Peris-Vicente, J., Es-teve-Romero, J. and Carda-Broch, S. (2015) Validation of Analytical Methods Based on Chromatographic Techniques: An Overview. In: Anderson, J.L., Ber-thod, A., Estévez, V.P. and Stalcup, A.M., Eds., Analytical Separation Science, Wiley, 1757-1808.
Lopez, E., Etxebarria-Elezgarai, J., Amigo, J.M. and Seifert, A. (2023) The Importance of Choosing a Proper Validation Strategy in Predictive Models. A Tutorial with Real Examples. Analytica Chimica Acta, 1275, Article ID: 341532. https://doi.org/10.1016/j.aca.2023.341532
Varanka, T., Li, Y., Peng, W. and Zhao, G. (2024) Data Leakage and Evaluation Issues in Micro-Expression Analysis. IEEE Transactions on Affective Computing, 15, 186-197. https://doi.org/10.1109/taffc.2023.3265063
Ravi, S., Climent-Pérez, P. and Florez-Revuelta, F. (2023) A Review on Visual Privacy Preservation Tech-niques for Active and Assisted Living. Multimedia Tools and Applications, 83, 14715-14755. https://doi.org/10.1007/s11042-023-15775-2
Khoo, L.S., Lim, M.K., Chong, C.Y. and McNaney, R. (2024) Machine Learning for Mul-timodal Mental Health Detection: A Systematic Review of Passive Sensing Ap-proaches. Sensors, 24, Article 348. https://doi.org/10.3390/s24020348
Foronda-Pascual, D., Camara, C. and Peris-Lopez, P. (2025) Untouchable and Cancelable Biometrics: Human Identification in Various Physiological States Using Radar-Based Heart Signals. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/jbhi.2025.3566167
Tu, F., Zhu, J., Zheng, Q. and Zhou, M. (2018) Be Careful of When: An Empirical Study on Time-Related Misuse of Issue Tracking Data. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Founda-tions of Software Engineering, Lake Buena, 4-9 November 2018, 307-318. https://doi.org/10.1145/3236024.3236054
Liu, J., Huang, Z., Cai, H., Shen, H.T., Ngo, C.W. and Wang, W. (2013) Near-Duplicate Video Retrieval: Current Research and Future Trends. ACM Computing Surveys, 45, 1-23. https://doi.org/10.1145/2501654.2501658
Xia, W., Jiang, H., Feng, D., Douglis, F., Shilane, P., Hua, Y., et al. (2016) A Comprehensive Study of the Past, Present, and Future of Data Deduplication. Proceedings of the IEEE, 104, 1681-1710. https://doi.org/10.1109/jproc.2016.2571298
Carvalho, M., Pinho, A.J. and Brás, S. (2025) Resampling Approaches to Handle Class Imbal-ance: A Review from a Data Perspective. Journal of Big Data, 12, Article No. 71. https://doi.org/10.1186/s40537-025-01119-4
Marqués, A.I., García, V. and Sánchez, J.S. (2013) On the Suitability of Resampling Techniques for the Class Imbalance Problem in Credit Scoring. Journal of the Operational Research Society, 64, 1060-1070. https://doi.org/10.1057/jors.2012.120
Xiao, J., Wang, Y., Chen, J., Xie, L. and Huang, J. (2021) Impact of Resampling Methods and Classification Models on the Imbalanced Credit Scoring Problems. Infor-mation Sciences, 569, 508-526. https://doi.org/10.1016/j.ins.2021.05.029
Yu, Z., Li, X. and Zhao, G. (2021) Facial-Video-Based Physiological Signal Measurement: Recent Advances and Affective Applications. IEEE Signal Processing Magazine, 38, 50-58. https://doi.org/10.1109/msp.2021.3106285
Cheng, L., Han, J. and Na-sirov, J. (2024) Ethical Considerations Related to Personal Data Collection and Reuse: Trust and Transparency in Language and Speech Technologies. Interna-tional Journal of Legal Discourse, 9, 217-235. https://doi.org/10.1515/ijld-2024-2010
Srivastav, A.K., Das, P. and Sri-vastava, A.K. (2024) Data Management, Security, and Ethical Considerations. In: Srivastav, A.K., Das, P. and Srivastava, A.K., Eds., Biotech and IoT, Apress, 133-149. https://doi.org/10.1007/979-8-8688-0527-1_6
Apeh, C.E., Odionu, C.S., Bristol-Alagbariya, B., Okon, R. and Austin-Gabriel, B. (2024) Eth-ical Considerations in IT Systems Design: A Review of Principles and Best Prac-tices. World Journal of Advanced Research and Reviews, 22, 2023-2031. https://doi.org/10.30574/wjarr.2024.22.1.1115
Rani, S. and Hasanpuri, V. (2025) Data Security and Ethical Considerations in Healthcare Digital Twins. In: Dixit, M., Bhatele, K.R. and Tiwari, D., Eds., Digital Twin Technology for Bet-ter Health, CRC Press, 102-148. https://doi.org/10.1201/9781003498117-6
Georgiopoulou, Z., Makri, E. and Lambrinoudakis, C. (2020) GDPR Compliance: Proposed Technical and Or-ganizational Measures for Cloud Provider. Information & Computer Security, 28, 665-680. https://doi.org/10.1108/ics-01-2020-0009
Cambronero, M.E., Martínez, M.A., Llana, L., Rodríguez, R.J. and Russo, A. (2024) Towards a Gdpr-Compliant Cloud Architecture with Data Privacy Controlled through Sticky Policies. PeerJ Computer Science, 10, e1898. https://doi.org/10.7717/peerj-cs.1898