全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Interaction between Malassezia and Novel Therapeutic Agents in Chronic Inflammatory Cutaneous Conditions

DOI: 10.4236/oalib.1114570, PP. 1-19

Subject Areas: Dermatology

Keywords: Malassezia, Skin Microbiome, Atopic Dermatitis, Psoriasis, Biologic Therapies

Full-Text   Cite this paper   Add to My Lib

Abstract

Chronic inflammatory cutaneous diseases, such as atopic dermatitis (AD) and psoriasis, are complex disorders influenced by immune dysregulation, various genetic factors, and more recently identified alterations within the skin microbiome. Among the skin’s commensal organisms, Malassezia species play a significant role in modulating both skin inflammation and barrier function. These fungi are normally harmless; becoming pathogenic under specific immune or environmental conditions is one of the proposed mechanisms of disease exacerbation. Recent advances in treatment, with biologic agents and smaller molecule therapies, have revolutionized disease management by precisely targeting certain immune pathways (IL-4, IL-13, IL-17, IL-23, and JAK-STAT cascade) being the primary focus of these interventions. The subsequent effects that such targeted therapies have on the skin microbiome itself, Malassezia included, are yet to be fully understood. Emerging evidence points towards biologics and/or novel treatments altering the local immune environment and to some degree skin barrier integrity, which in turn affects microbial composition and activity. This review details the current knowledge of Malassezia distribution and behavior in AD and psoriasis patients, their immune interactions, and potential impact of the novel therapies on malassezia. Personalized, microbiome conscious, therapeutic approaches are the end goal, improving treatment outcome and long term skin health in patients with chronic inflammatory skin disease. 

Cite this paper

Shumet, E. D. and Sun, Y. (2025). Interaction between Malassezia and Novel Therapeutic Agents in Chronic Inflammatory Cutaneous Conditions. Open Access Library Journal, 12, e14570. doi: http://dx.doi.org/10.4236/oalib.1114570.

References

[1]  Song, A., Lee, S.E. and Kim, J.H. (2022) Immunopathology and Immunotherapy of Inflammatory Skin Diseases. Immune Network, 22, e7. https://doi.org/10.4110/in.2022.22.e7
[2]  Yamanaka, K. and Mizutani, H. (2015) “Inflammatory Skin March”: Il-1-Mediated Skin Inflammation, Atopic Dermatitis, and Psoriasis to Cardiovascular Events. Journal of Allergy and Clinical Immunology, 136, 823-824. https://doi.org/10.1016/j.jaci.2015.06.009
[3]  Abuabara, K., Azfar, R.S., Shin, D.B., Neimann, A.L., Troxel, A.B. and Gelfand, J.M. (2010) Cause-Specific Mortality in Patients with Severe Psoriasis: A Popula-tion-Based Cohort Study in the U.K. British Journal of Dermatology, 163, 586-592. https://doi.org/10.1111/j.1365-2133.2010.09941.x
[4]  Silverberg, J.I. (2015) Association between Adult Atopic Der-matitis, Cardiovascular Disease, and Increased Heart Attacks in Three Population-Based Studies. Allergy, 70, 1300-1308. https://doi.org/10.1111/all.12685
[5]  Andersen, Y.M.F., Egeberg, A., Gislason, G.H., Hansen, P.R., Skov, L. and Thyssen, J.P. (2016) Risk of Myocardial Infarction, Ischemic Stroke, and Cardiovascular Death in Patients with Atopic Dermatitis. Journal of Allergy and Clinical Immunology, 138, 310-312.e3. https://doi.org/10.1016/j.jaci.2016.01.015
[6]  Hu, S. and Lan, C.E. (2017) Psoriasis and Cardiovascular Comorbidities: Focusing on Severe Vascular Events, Cardiovascular Risk Fac-tors and Implications for Treatment. International Journal of Molecular Sciences, 18, Article 2211. https://doi.org/10.3390/ijms18102211
[7]  Gelfand, J.M., Dommasch, E.D., Shin, D.B., Azfar, R.S., Kurd, S.K., Wang, X., et al. (2009) The Risk of Stroke in Patients with Psoriasis. Journal of Investigative Dermatology, 129, 2411-2418. https://doi.org/10.1038/jid.2009.112
[8]  Ruchti, F. (2024) Immunity to the Skin Commensal Yeast Malassezia in Healthy and Atopic Skin. Dissertation, University of Zurich.
[9]  Vijaya Chandra, S.H., Srinivas, R., Dawson, T.L. and Com-mon, J.E. (2021) Cutaneous Malassezia: Commensal, Pathogen, or Protector? Frontiers in Cellular and Infection Microbiolo-gy, 10, Article 614446. https://doi.org/10.3389/fcimb.2020.614446
[10]  Pinto, L.M., Chiricozzi, A., Calabrese, L., Man-nino, M. and Peris, K. (2022) Novel Therapeutic Strategies in the Topical Treatment of Atopic Dermatitis. Pharmaceutics, 14, Article 2767. https://doi.org/10.3390/pharmaceutics14122767
[11]  Kim, H. (2022) Targeting Cytokines and Sig-naling Molecules Related to Immune Pathways in Atopic Dermatitis: Therapeutic Implications and Challenges. Archives of Pharmacal Research, 45, 894-908. https://doi.org/10.1007/s12272-022-01421-2
[12]  Kolb, L. and Ferrer-Bruker, S.J. (2024) Atopic Dermatitis. StatPearls.
[13]  Malajian, D. and Guttman-Yassky, E. (2015) New Pathogenic and Therapeutic Paradigms in Atopic Dermatitis. Cytokine, 73, 311-318. https://doi.org/10.1016/j.cyto.2014.11.023
[14]  Fujii, M. (2020) Current Understanding of Pathophysiological Mechanisms of Atopic Dermatitis: Interactions among Skin Barrier Dysfunc-tion, Immune Abnormalities and Pruritus. Biological and Pharmaceutical Bulletin, 43, 12-19. https://doi.org/10.1248/bpb.b19-00088
[15]  Iskandar, I.Y.K., Parisi, R., Griffiths, C.E.M. and Ashcroft, D.M. (2020) Sys-tematic Review Examining Changes over Time and Variation in the Incidence and Prevalence of Psoriasis by Age and Gen-der. British Journal of Dermatology, 184, 243-258. https://doi.org/10.1111/bjd.19169
[16]  Sterry W. (2014) Plaque Psoriasis. In: Sterry, W., Sabat, R. and Philipp, S., eds., Psoriasis: Diagnosis and Management, John Wiley & Sons, 55-75.
[17]  Harden, J.L., Krueger, J.G. and Bowcock, A.M. (2015) The Immunogenetics of Psoriasis: A Comprehensive Re-view. Journal of Autoimmunity, 64, 66-73. https://doi.org/10.1016/j.jaut.2015.07.008
[18]  Boniface, K., Blom, B., Liu, Y. and De Waal Malefyt, R. (2008) From Interleukin-23 to T-Helper 17 Cells: Human T-Helper Cell Differentiation Revisited. Immunological Reviews, 226, 132-146. https://doi.org/10.1111/j.1600-065x.2008.00714.x
[19]  Morizane, S. and Gallo, R.L. (2012) Antimicrobial Peptides in the Pathogenesis of Psoriasis. The Journal of Dermatology, 39, 225-230. https://doi.org/10.1111/j.1346-8138.2011.01483.x
[20]  Hänsel, A., Günther, C., Ingwersen, J., Starke, J., Schmitz, M., Bachmann, M., et al. (2011) Human Slan (6-Sulfo LacNAc) Dendritic Cells Are Inflammatory Dermal Dendritic Cells in Pso-riasis and Drive Strong TH17/TH1 T-Cell Responses. Journal of Allergy and Clinical Immunology, 127, 787-794.e9. https://doi.org/10.1016/j.jaci.2010.12.009
[21]  Boekhout, T., et al. (2010) Malassezia and the Skin: Science and Clinical Practice. Springer, 1-319.
[22]  Park, H.R., Oh, J.H., Lee, Y.J., Park, S.H., Lee, Y.W., Lee, S., et al. (2020) Inflam-masome-Mediated Inflammation by Malassezia in Human Keratinocytes: A Comparative Analysis with Different Strains. Mycoses, 64, 292-299. https://doi.org/10.1111/myc.13214
[23]  Lee, Y., Yassa, C., Park, S., Song, S.W., Jung, W.H., Lee, Y.W., et al. (2023) Interactions between Malassezia and New Therapeutic Agents in Atopic Dermatitis Affecting Skin Barrier and Inflammation in Recombinant Human Epidermis Model. International Journal of Molecular Sciences, 24, Article 6171. https://doi.org/10.3390/ijms24076171
[24]  Nowicka, D. and Nawrot, U. (2019) Contribution of Malassezia spp. to the Development of Atopic Dermatitis. Mycoses, 62, 588-596. https://doi.org/10.1111/myc.12913
[25]  Deng, R., Wang, X. and Li, R. (2023) Dermatophyte Infection: From Fungal Pathogenicity to Host Immune Responses. Frontiers in Immunology, 14, Article 1285887. https://doi.org/10.3389/fimmu.2023.1285887
[26]  Sparber, F. and LeibundGut-Landmann, S. (2017) Host Responses to Malassezia spp. in the Mammalian Skin. Frontiers in Immunology, 8, Article 1614. https://doi.org/10.3389/fimmu.2017.01614
[27]  Angiolella, L., Leone, C., Rojas, F., Mussin, J., de los Angeles Sosa, M. and Giusiano, G. (2017) Biofilm, Adherence, and Hydrophobicity as Virulence Factors in Malassezia Furfur. Medical Mycology, 56, 110-116. https://doi.org/10.1093/mmy/myx014
[28]  Cheng, Y., Cong, J., Xu, J., Tang, L., Zhou, Z., Yang, X., et al. (2025) Research Progress on the Exacerbation of Lipid Metabolism by Malassezia and Its Impact on the Skin Barrier Func-tion. Cosmetics, 12, Article 67. https://doi.org/10.3390/cosmetics12020067
[29]  Ruchti, F. and Leibund Gut-Landmann, S. (2022) New Insights into Immunity to Skin Fungi Shape Our Understanding of Health and Disease. Parasite Immunology, 45, e12948. https://doi.org/10.1111/pim.12948
[30]  Kanatoula, D.D., Bodner, E., Ghoreschi, K., Meier, K. and Solimani, F. (2024) Non‐biologic Immunosuppressive Drugs for Inflammatory and Autoimmune Skin Diseases. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 22, 400-421. https://doi.org/10.1111/ddg.15270
[31]  Baldo, B.A. and Pham, N.H. (2020) Biologics: Monoclonal Antibodies for Non-Cancer Therapy, Cytokines, Fusion Proteins, Enzymes, and Hormones. In: Baldo, B.A. and Pham, N.H., Eds., Drug Allergy, Springer, 533-593. https://doi.org/10.1007/978-3-030-51740-3_13
[32]  Akhter, S., Tasnim, F.M., Islam, M.N., Rauf, A., Mitra, S., Emran, T.B., et al. (2023) Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-Immune Diseases. Current Pharmaceutical Design, 29, 2078-2090. https://doi.org/10.2174/1381612829666230904150808
[33]  Ghoreschi, K., Balato, A., Ener-bäck, C. and Sabat, R. (2021) Therapeutics Targeting the IL-23 and IL-17 Pathway in Psoriasis. The Lancet, 397, 754-766. https://doi.org/10.1016/s0140-6736(21)00184-7
[34]  Mohd Noor, A.A., Azlan, M. and Mohd Redzwan, N. (2022) Or-chestrated Cytokines Mediated by Biologics in Psoriasis and Its Mechanisms of Action. Biomedicines, 10, Article 498. https://doi.org/10.3390/biomedicines10020498
[35]  Numerof, R.P. and Asadullah, K. (2006) Cytokine and An-ti-Cytokine Therapies for Psoriasis and Atopic Dermatitis. BioDrugs, 20, 93-103. https://doi.org/10.2165/00063030-200620020-00004
[36]  Sander, N., Stölzl, D., Fonfara, M., Hartmann, J., Harder, I., Suhrkamp, I., et al. (2024) Blockade of Interleukin-13 Signalling Improves Skin Barrier Function and Biology in Patients with Moderate-To-Severe Atopic Dermatitis. British Journal of Dermatology, 191, 344-350. https://doi.org/10.1093/bjd/ljae138
[37]  Boyman, O., Comte, D. and Spertini, F. (2014) Adverse Reactions to Biologic Agents and Their Medical Management. Nature Reviews Rheumatology, 10, 612-627. https://doi.org/10.1038/nrrheum.2014.123
[38]  Balato, A., Scala, E., Balato, N., Caiazzo, G., Di Caprio, R., Monfrecola, G., et al. (2017) Biologics That Inhibit the Th17 Pathway and Related Cytokines to Treat Inflammatory Disorders. Expert Opin-ion on Biological Therapy, 17, 1-12. https://doi.org/10.1080/14712598.2017.1363884
[39]  Benson, J.M., Peritt, D., Scallon, B.J., Heavner, G.A., Shealy, D.J., Giles-Komar, J.M., et al. (2011) Discovery and Mechanism of Ustekinumab: A Hu-man Monoclonal Antibody Targeting Interleukin-12 and Interleukin-23 for Treatment of Immune-Mediated Disorders. mAbs, 3, 535-545. https://doi.org/10.4161/mabs.3.6.17815
[40]  Liu, T., Li, S., Ying, S., Tang, S., Ding, Y., Li, Y., et al. (2020) The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Frontiers in Immunology, 11, Article 594735. https://doi.org/10.3389/fimmu.2020.594735
[41]  Pescitelli, L., Rosi, E., Ricceri, F., Pimpinelli, N. and Prignano, F. (2020) Novel Therapeutic Approaches and Targets for the Treatment of Atopic Dermatitis. Current Pharma-ceutical Biotechnology, 22, 73-84. https://doi.org/10.2174/1389201021666200611112755
[42]  Gosia, M., Doshi, G., Bagwe Parab, S. and Godad, A. (2025) Innovative Approaches to Psoriasis: Small Molecules Targeting Key Signaling Path-ways. Immunological Investigations, 54, 457-493. https://doi.org/10.1080/08820139.2025.2449960
[43]  Ryguła, I., Pikiewicz, W. and Kaminiów, K. (2023) Novel Janus Kinase Inhibitors in the Treatment of Dermatologic Conditions. Mole-cules, 28, Article 8064. https://doi.org/10.3390/molecules28248064
[44]  Goldminz, A.M., Au, S.C., Kim, N., Gottlieb, A.B. and Lizzul, P.F. (2013) NF-κB: An Essential Transcription Factor in Psoriasis. Journal of Dermatological Science, 69, 89-94. https://doi.org/10.1016/j.jdermsci.2012.11.002
[45]  Szymański, Ł., Skopek, R., Palusińska, M., Schenk, T., Stengel, S., Lewicki, S., et al. (2020) Retinoic Acid and Its Derivatives in Skin. Cells, 9, Article 2660. https://doi.org/10.3390/cells9122660
[46]  Li, H., Zuo, J. and Tang, W. (2018) Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 9, Article 1048. https://doi.org/10.3389/fphar.2018.01048
[47]  Yang, Y., Li, S., Wang, Y., Zhao, Y. and Li, Q. (2022) Protein Tyrosine Kinase Inhibitor Resistance in Malignant Tumors: Molecular Mechanisms and Future Perspective. Signal Transduction and Targeted Therapy, 7, Article No. 329. https://doi.org/10.1038/s41392-022-01168-8
[48]  Bissonnette, R., Saint‐Cyr Proulx, E., Jack, C. and Maari, C. (2023) Tapinarof for Psoriasis and Atopic Dermatitis: 15 Years of Clinical Research. Journal of the European Academy of Dermatology and Venereology, 37, 1168-1174. https://doi.org/10.1111/jdv.18925
[49]  Jiraskova Zakostelska, Z., Reiss, Z., Tlaskalova-Hogenova, H. and Rob, F. (2023) Paradoxical Reactions to Anti-TNFα and Anti-IL-17 Treatment in Psoriasis Patients: Are Skin and/or Gut Microbiota In-volved? Dermatology and Therapy, 13, 911-933. https://doi.org/10.1007/s13555-023-00904-4
[50]  Koike, Y., Ku-watsuka, S., Motooka, D. and Murota, H. (2025) Dysbiosis of the Human Skin Mycobiome in Patients Receiving Systemic IL-23 Inhibitors. Allergology International, 74, 72-77. https://doi.org/10.1016/j.alit.2024.06.003
[51]  Wijs, L.E.M., Ngu-yen, N.T., Kunkeler, A.C.M., Nijsten, T., Damman, J. and Hijnen, D.J. (2019) Clinical and Histopathological Characterization of Paradoxical Head and Neck Erythema in Patients with Atopic Dermatitis Treated with Dupilumab: A Case Series. British Journal of Dermatology, 183, 745-749. https://doi.org/10.1111/bjd.18730
[52]  Soria, A., Du-Thanh, A., Seneschal, J., Jachiet, M., Staumont-Sallé, D. and Barbarot, S. (2019) Development or Exacerbation of Head and Neck Dermatitis in Pa-tients Treated for Atopic Dermatitis with Dupilumab. JAMA Dermatology, 155, 1312-1315. https://doi.org/10.1001/jamadermatol.2019.2613
[53]  Kozera, E., Flora, A., Stewart, T., Gill, K., Xu, J., De La Vega, M.A., et al. (2023) Dupilumab-Associated Head and Neck Dermatitis Resolves Temporarily with Itraconazole Therapy and Rapidly with Transition to Upadacitinib, with Malassezia-Specific Immunoglobulin E Levels Mirroring Clinical Response. Journal of the American Academy of Dermatology, 88, 255-257. https://doi.org/10.1016/j.jaad.2022.05.021
[54]  Umemoto, N., Kakurai, M., Matsumoto, T., Mizuno, K., Cho, O., Sugita, T., et al. (2024) Dupilumab Alters Both the Bacterial and Fungal Skin Microbiomes of Patients with Atopic Dermatitis. Microorganisms, 12, Article 224. https://doi.org/10.3390/microorganisms12010224
[55]  de Aguiar Cordeiro, R., Reis, A.T., Lima, X.T.V., de Andrade, A.R.C., Aguiar, A.L.R., Portela, F.V.M., et al. (2022) Malassezia spp. and Candida spp. from Patients with Psoriasis Exhibit Reduced Susceptibility to Antifungals. Brazilian Journal of Microbiology, 54, 169-177. https://doi.org/10.1007/s42770-022-00883-2
[56]  Park, M., Park, S. and Jung, W.H. (2021) Skin Commensal Fungus Malassezia and Its Lipases. Journal of Microbiology and Biotechnology, 31, 637-644. https://doi.org/10.4014/jmb.2012.12048
[57]  Han, X., Ma, T., Wang, Q., Jin, C., Han, Y., Liu, G., et al. (2023) The Mecha-nism of Oxymatrine on Atopic Dermatitis in Mice Based on SOCS1/JAK-STAT3 Pathway. Frontiers in Pharmacology, 13, Article 1091090. https://doi.org/10.3389/fphar.2022.1091090
[58]  Leong, C., Chan, J.W.K., Lee, S.M., Lam, Y.I., Goh, J.P.Z., Ianiri, G., et al. (2021) Azole Resistance Mechanisms in Pathogenic Malassezia furfur. Antimicrobial Agents and Chemotherapy, 65, e01975-20. https://doi.org/10.1128/aac.01975-20
[59]  Leong, C., Chua, W., Chong, C., Lee, S.M., Maurer-Stroh, S., Jung, W.H., et al. (2025) Non-Synonymous ERG11 Mutations in M. restricta and M. arunalokei: Impact on Azole Susceptibility. Microbiology Spectrum, 13, e00007-25. https://doi.org/10.1128/spectrum.00007-25
[60]  Siemieniuk, M., Czyzewska, U., Strumilo, S. and Tylicki, A. (2015) Thi-amine Antivitamins—An Opportunity of Therapy of Fungal Infections Caused by Malassezia pachydermatis and Candida albicans. Mycoses, 59, 108-116. https://doi.org/10.1111/myc.12441
[61]  Veerman, G.D.M., Hussaarts, K.G.A.M., Jans-man, F.G.A., Koolen, S.W.L., van Leeuwen, R.W.F. and Mathijssen, R.H.J. (2020) Clinical Implications of Food-Drug Interac-tions with Small-Molecule Kinase Inhibitors. The Lancet Oncology, 21, e265-e279. https://doi.org/10.1016/s1470-2045(20)30069-3

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133