全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Quantum-Inspired Feature Representations for Depression Subtype Classification: A Synthetic Benchmark Study

DOI: 10.4236/oalib.1114448, PP. 1-25

Subject Areas: Psychiatry & Psychology, Neurology

Keywords: Quantum Machine Learning, Depression Subtypes, Clinical Psychiatry, Neural Networks, Computational Psychiatry

Full-Text   Cite this paper   Add to My Lib

Abstract

Depression is a clinically heterogeneous disorder comprising subtypes such as melancholic, atypical, anxious, and unspecified, each characterized by distinct symptom profiles and treatment responses. Accurate identification of these subtypes is essential for precision psychiatry and optimizing therapeutic outcomes. This study investigates the potential of quantum-inspired feature representations to enhance the classification of depression subtypes from clinical data. A synthetic dataset of 5000 patients was generated, simulating realistic demographic, psychometric, behavioural, and biological variables (e.g., BDI, HRSD, cortisol, sleep, anxiety, BMI). Using standardized and quantum-transformed features, we trained and evaluated four classification models: Random Forest, Support Vector Machine (SVM), XGBoost, and a multi-layer neural network. Quantum-inspired features were derived via parameterized quantum circuits with amplitude encoding and entanglement, yielding fixed-length state vector representations. Performance was assessed using accuracy, weighted F1-score, ROC AUC, and confusion matrices on a held-out test set. Across all models, original clinical features consistently outperformed quantum-transformed features in classification accuracy and subtype separability. Statistical tests confirmed significant performance degradation with quantum features (p < 0.001). Despite this, our framework establishes a reproducible pipeline for benchmarking quantum-inspired machine learning in psychiatry. The findings highlight both the current limitations and future potential of quantum-based representations in modelling complex mental health phenotypes. This work serves as a foundation for integrating emerging quantum learning paradigms with clinically relevant, multi-class psychiatric classification tasks.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2026). Quantum-Inspired Feature Representations for Depression Subtype Classification: A Synthetic Benchmark Study . Open Access Library Journal, 13, e14448. doi: http://dx.doi.org/10.4236/oalib.1114448.

References

[1]  Marx, W., Penninx, B.W.J.H., Solmi, M., Furukawa, T.A., Firth, J., Carvalho, A.F., et al. (2023) Major Depressive Disorder. Nature Reviews Disease Primers, 9, Article No. 44. https://doi.org/10.1038/s41572-023-00454-1
[2]  Bromet, E.J., Andrade, L.H., Bruffaerts, R. and Williams, D.R. (n.d.) Major Depressive Disorder. In: Scott, K.M., et al., Eds., Mental Disorders around the World: Facts and Figures from the WHO World Mental Health Surveys, Cambridge University Press, 41-56. https://doi.org/10.1017/9781316336168.004
[3]  Yan, G., Zhang, Y., Wang, S., Yan, Y., Liu, M., Tian, M., et al. (2024) Global, Regional, and National Temporal Trend in Burden of Major Depressive Disorder from 1990 to 2019: An Analysis of the Global Burden of Disease Study. Psychiatry Research, 337, Article ID: 115958. https://doi.org/10.1016/j.psychres.2024.115958
[4]  Gutiérrez-Rojas, L., Porras-Segovia, A., Dunne, H., Andrade-González, N. and Cervilla, J.A. (2020) Prevalence and Correlates of Major Depressive Disorder: A Systematic Review. Brazilian Journal of Psychiatry, 42, 657-672. https://doi.org/10.1590/1516-4446-2020-0650
[5]  Wang, W., Wang, Y., Wang, F., Chen, H., Qin, X., Yang, L., et al. (2024) Notable Dysthymia: Evolving Trends of Major Depressive Disorders and Dysthymia in China from 1990 to 2019, and Projections until 2030. BMC Public Health, 24, Article No. 1585. https://doi.org/10.1186/s12889-024-18943-7
[6]  Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., et al. (2003) The Epidemi-ology of Major Depressive Disorder: results from the National Comorbidity Sur-vey Replication (NCS-R). JAMA, 289, 3095-3105. https://doi.org/10.1001/jama.289.23.3095
[7]  Sousa, R.D., Gouveia, M., Nunes da Silva, C., Rodrigues, A.M., Cardoso, G., Antunes, A.F., et al. (2022) Treatment-Resistant Depression and Major Depression with Suicide Risk—The Cost of Illness and Burden of Disease. Frontiers in Public Health, 10, Article ID: 898491. https://doi.org/10.3389/fpubh.2022.898491
[8]  Rush, A.J. (2007) The Varied Clinical Presentations of Major Depressive Disorder. Journal of Clin-ical Psychiatry, 68, 4.
[9]  Kennedy, S.H. and Ceniti, A.K. (2017) Unpacking Major Depressive Disorder: From Classification to Treatment Selection. The Ca-nadian Journal of Psychiatry, 63, 308-313. https://doi.org/10.1177/0706743717748883
[10]  Tarasov, V.V., Ivanets, N.N., Svistunov, A.A., Chubarev, V.N., Kinkulkina, M.A., Tikhonova, Y.G., et al. (2021) Biological Mechanisms of Atypical and Melancholic Major Depressive Disorder. Current Pharmaceutical Design, 27, 3399-3412. https://doi.org/10.2174/1381612827666210603145441
[11]  Rittberg, B.R. (2016) Major Depressive Disorder. In: Fatemi, S.H. and Clayton, P.J., Eds., The Medical Basis of Psychiatry, Springer, 79-90. https://doi.org/10.1007/978-1-4939-2528-5_5
[12]  Perrotta, G. (2019) De-pressive Disorders: Definitions, Contexts, Differential Diagnosis, Neural Corre-lates and Clinical Strategies. Archives of Depression and Anxiety, 5, 9-33. https://doi.org/10.17352/2455-5460.000038
[13]  Möller, H., Bandelow, B., Bauer, M., Hampel, H., Herpertz, S.C., Soyka, M., et al. (2014) DSM-5 Reviewed from Different Angles: Goal Attainment, Rationality, Use of Evidence, Conse-quences—Part 1: General Aspects and Paradigmatic Discussion of Depressive Disorders. European Archives of Psychiatry and Clinical Neuroscience, 265, 5-18. https://doi.org/10.1007/s00406-014-0520-x
[14]  Bauer, M., Pfennig, A., Severus, E., Whybrow, P.C., Angst, J. and Möller, H. (2013) World Federa-tion of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Update 2013 on the Acute and Continuation Treatment of Unipolar Depressive Disorders. The World Journal of Biological Psychiatry, 14, 334-385. https://doi.org/10.3109/15622975.2013.804195
[15]  Akiskal, H.S. (2002) Classification, Diagnosis and Boundaries of Bipolar Disorders. Bipolar Disorder, 5, 1-95.
[16]  Rief, W. and Martin, A. (2014) How to Use the New DSM-5 So-matic Symptom Disorder Diagnosis in Research and Practice: A Critical Evalua-tion and a Proposal for Modifications. Annual Review of Clinical Psychology, 10, 339-367. https://doi.org/10.1146/annurev-clinpsy-032813-153745
[17]  Gintner, G.G. (2014) DSM-5 Conceptual Changes: Innovations, Limitations and Clinical Im-plications. The Professional Counselor, 4, 179-190. https://doi.org/10.15241/ggg.4.3.179
[18]  Whooley, O. (2016) Measuring Mental Disorders: The Failed Commensuration Project of DSM-5. Social Science & Medicine, 166, 33-40. https://doi.org/10.1016/j.socscimed.2016.08.006
[19]  Hagan, L.D. and Guil-mette, T.J. (2015) DSM-5: Challenging Diagnostic Testimony. International Journal of Law and Psychiatry, 42, 128-134. https://doi.org/10.1016/j.ijlp.2015.08.017
[20]  Babu, A. and Joseph, A.P. (2024) Artificial Intelligence in Mental Healthcare: Transformative Potential Vs. the Necessity of Human Interaction. Frontiers in Psychology, 15, Article ID: 1378904. https://doi.org/10.3389/fpsyg.2024.1378904
[21]  Baydili, İ., Tas-ci, B. and Tasci, G. (2025) Artificial Intelligence in Psychiatry: A Review of Bio-logical and Behavioral Data Analyses. Diagnostics, 15, Article No. 434. https://doi.org/10.3390/diagnostics15040434
[22]  Prasad, A. (2025) Pre-dictive Analytics in Clinical Psychology: Role of Machine Learning in Future Mental Health Care. In: Transforming Neuropsychology and Cognitive Psychol-ogy with AI and Machine Learning, IGI Global Scientific Publishing, 313-332. https://doi.org/10.4018/979-8-3693-9341-3.ch013
[23]  Sundaram, A., Subramaniam, H., Ab Hamid, S.H. and Mohamad Nor, A. (2024) An Adaptive Data-Driven Architecture for Mental Health Care Applications. PeerJ, 12, e17133. https://doi.org/10.7717/peerj.17133
[24]  Quinn, T.P., Hess, J.L., Marshe, V.S., Barnett, M.M., Hauschild, A., Maciukiewicz, M., et al. (2024) A Primer on the Use of Machine Learning to Distil Knowledge from Data in Biolog-ical Psychiatry. Molecular Psychiatry, 29, 387-401. https://doi.org/10.1038/s41380-023-02334-2
[25]  Aisha Katsina Isa (2024) Exploring Digital Therapeutics for Mental Health: AI-Driven Innovations in Per-sonalized Treatment Approaches. World Journal of Advanced Research and Re-views, 24, 2733-2749. https://doi.org/10.30574/wjarr.2024.24.3.3997
[26]  Olaitan, O.F., Ayeni, S.O., Olosunde, A., Okeke, F.C., Okonkwo, U.U., Ochieze, C.G., et al. (2025) Quantum Computing in Artificial Intelligence: A Review of Quantum Machine Learning Algorithms. Path of Science, 11, 7001-7009. https://doi.org/10.22178/pos.117-25
[27]  Taghandiki, K. (2024) Quantum Machine Learning Unveiled: A Comprehensive Re-view. Journal of Engineering and Applied Research, 1, 29-48.
[28]  Saini, R.K. (2024) Quantum Machine Learning: Combining Quantum Algorithms with Classical AI Techniques for Im-proved Learning Models. Quantum, 10, 15608-15624.
[29]  Macaluso, A. (2024) Quantum Supervised Learning. KI-Künstliche Intelligenz, 38, 277-291. https://doi.org/10.1007/s13218-024-00856-7
[30]  Uma, K. and Gopu, T. (2025) Revolutionizing Pattern Recognition with Quantum Machine Learning. In: Ghosh, A., et al., Eds., Quantum Machine Learning in Industrial Automation, Springer, 333-360. https://doi.org/10.1007/978-3-031-99786-0_15
[31]  Khurana, S. and Nene, M.J. (2023) Machine Learning in the Quantum Era. 2023 2nd International Conference on Futuristic Technologies (INCOFT), Belagavi, 24-26 November 2023, 1-6. https://doi.org/10.1109/incoft60753.2023.10425372
[32]  Ur Rasool, R., Ahmad, H.F., Rafique, W., Qayyum, A., Qadir, J. and Anwar, Z. (2023) Quantum Computing for Healthcare: A Review. Future Internet, 15, Ar-ticle No. 94. https://doi.org/10.3390/fi15030094
[33]  Chen, L., Li, T., Chen, Y., Chen, X., Wozniak, M., Xiong, N., et al. (2024) Design and Analysis of Quan-tum Machine Learning: A Survey. Connection Science, 36, Article ID: 2312121. https://doi.org/10.1080/09540091.2024.2312121
[34]  Ray, S. (2024) Quantum-Inspired Data Embedding for Unlabeled Data in Sparse Environ-ments: A Theoretical Framework for Improved Semi-Supervised Learning without Hardware Dependence. Sakarya University Journal of Computer and Information Sciences, 7, 470-481. https://doi.org/10.35377/saucis..1564497
[35]  Huynh, L., Hong, J., Mian, A., Suzuki, H., Wu, Y.Q. and Camtepe, S. (2023) Quantum-Inspired Machine Learning: A Survey.
[36]  Jha, R.K. (2023) From Quantum Computing to Quan-tum-Inspired Computation for Neuromorphic Advancement—A Sur-vey.
[37]  Liu, Y., Li, Q., Wang, B., Zhang, Y. and Song, D. (2023) A Survey of Quantum-Cognitively Inspired Sentiment Analysis Models. ACM Computing Surveys, 56, 1-37. https://doi.org/10.1145/3604550
[38]  Chiappini, S., Sampogna, G., Ventriglio, A., Menculini, G., Ricci, V., Pettorruso, M., et al. (2025) Exploring Emerging Psychopathological Characteristics and Challenges of Novel Depression Subtypes: Insights from the Literature. Frontiers in Psychiatry, 16, Article ID: 1613251. https://doi.org/10.3389/fpsyt.2025.1613251
[39]  Clack, S. (2020) From Syndromes to Symptoms: Advancing Our Understanding of Mental Disorders. PhD Diss., Open Access Te Herenga Waka-Victoria University of Welling-ton.
[40]  Clark, L.A., Cuthbert, B., Lewis-Fernández, R., Narrow, W.E. and Reed, G.M. (2017) Three Approaches to Understanding and Classifying Mental Dis-order: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychological Science in the Public Interest, 18, 72-145. https://doi.org/10.1177/1529100617727266
[41]  Buser, S. and Cruz, L. (2015) DSM-5 Insanely Simplified: Unlocking the Spectrums within DSM-5 and ICD-10. Chiron Publications.
[42]  Gotlib, I.H. and LeMoult, J. (2014) The “Ins” and “Outs” of the Depressive Disorders Section of DSM-5. Clinical Psychology: Science and Practice, 21, 193-207. https://doi.org/10.1111/cpsp.12072
[43]  Jansson, L. and Nordgaard, J. (2016) The Psychiatric Interview for Differential Diagnosis. Vol. 270, Spring-er.
[44]  Chen, Z.S., Kulkarni, P., Galatzer-Levy, I.R., Bigio, B., Nasca, C. and Zhang, Y. (2022) Modern Views of Machine Learning for Precision Psychiatry. Patterns, 3, Article ID: 100602. https://doi.org/10.1016/j.patter.2022.100602
[45]  Omiyefa, S. (2025) Arti-ficial Intelligence and Machine Learning in Precision Mental Health Diagnostics and Predictive Treatment Models. International Journal of Research Publication and Reviews, 6, 85-99. https://doi.org/10.55248/gengpi.6.0325.1107
[46]  Gao, S., Calhoun, V.D. and Sui, J. (2018) Machine Learning in Major Depression: From Classification to Treatment Outcome Prediction. CNS Neuroscience & Therapeutics, 24, 1037-1052. https://doi.org/10.1111/cns.13048
[47]  Ermers, N.J., Hagoort, K. and Scheepers, F.E. (2020) The Predictive Validity of Machine Learning Models in the Classification and Treatment of Major Depressive Disorder: State of the Art and Future Directions. Frontiers in Psychiatry, 11, Article No. 472. https://doi.org/10.3389/fpsyt.2020.00472
[48]  Chen, Z.S., Kulkarni, P., Galatzer-Levy, I.R., Bigio, B., Nasca, C. and Zhang, Y. (2022) Modern Views of Machine Learning for Precision Psychiatry. Patterns, 3, Article ID: 100602. https://doi.org/10.1016/j.patter.2022.100602
[49]  Khurana, S., Nene, M. and Nene, M.J. (2024) Quantum Machine Learning: Unraveling a New Para-digm in Computational Intelligence. Quantum, 74, 1-25.
[50]  Ranga, D., Rana, A., Prajapat, S., Kumar, P., Kumar, K. and Vasilakos, A.V. (2024) Quantum Ma-chine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions. Mathematics, 12, Article No. 3318. https://doi.org/10.3390/math12213318
[51]  Khan, T.M. and Robles-Kelly, A. (2020) Machine Learning: Quantum vs Classical. IEEE Access, 8, 219275-219294. https://doi.org/10.1109/access.2020.3041719
[52]  Padha, A. and Sahoo, A. (2023) MAQML: A Meta-Approach to Quantum Machine Learning with Accentuated Sample Variations for Unobtrusive Mental Health Monitoring. Quantum Machine Intelligence, 5, Article No. 17. https://doi.org/10.1007/s42484-023-00108-1
[53]  Deif, R. and Salama, M. (2021) Depression from a Precision Mental Health Perspective: Utilizing Per-sonalized Conceptualizations to Guide Personalized Treatments. Frontiers in Psychiatry, 12, Article ID: 650318. https://doi.org/10.3389/fpsyt.2021.650318
[54]  Salazar de Pablo, G., Studerus, E., Vaquerizo-Serrano, J., Irving, J., Catalan, A., Oliver, D., et al. (2020) Implementing Precision Psychiatry: A Systematic Review of Individual-ized Prediction Models for Clinical Practice. Schizophrenia Bulletin, 47, 284-297. https://doi.org/10.1093/schbul/sbaa120
[55]  Niculescu, A.B., Le-Niculescu, H., Levey, D.F., Phalen, P.L., Dainton, H.L., Roseberry, K., et al. (2017) Precision Medicine for Suicidality: From Universality to Subtypes and Personalization. Molecular Psychiatry, 22, 1250-1273. https://doi.org/10.1038/mp.2017.128
[56]  Zhang, W., Sweeney, J.A., Bishop, J.R., Gong, Q. and Lui, S. (2023) Biological Subtyping of Psychiatric Syndromes as a Pathway for Advances in Drug Discovery and Personalized Medicine. Na-ture Mental Health, 1, 88-99. https://doi.org/10.1038/s44220-023-00019-x
[57]  Ullah, U. and Gar-cia-Zapirain, B. (2024) Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications. IEEE Access, 12, 11423-11450. https://doi.org/10.1109/access.2024.3353461
[58]  Torda, T. (2024) Interpretability and Explainability AI in Advanced Neural Networks for Topological Quantum Field Theory and Medical Application.
[59]  Marengo, A. and Santamato, V. (2025) Quantum Algorithms and Complexity in Healthcare Applications: A Systematic Review with Machine Learning-Optimized Analysis. Frontiers in Computer Science, 7, Article ID: 1584114. https://doi.org/10.3389/fcomp.2025.1584114
[60]  Ashaq, I., Sheikh, A.A., Beri, N., Mittal, S., Naim, M.J., Iqbal, M., et al. (2025) Disease Biomarkers and Their Utility in LC-MS and NMR Studies: An Overview. Current Analytical Chemistry, 21, e15734110368571. https://doi.org/10.2174/0115734110368571250712045605
[61]  Ruprai, D. (2022) Cortical Thickness and Neuropsychological Applications: Mor-pho-metric Differences in Cortical Thickness Associated with Cognitive Vari-ances in Ageing and Circadian Chronotypes. PhD Diss., University of Birming-ham.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133