全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

AI-Enhanced Gut Brain Axis Profiling for Major Depressive Disorder: Integrating Synthetic Multi-Omics, Deep Learning, and Interpretable Precision Therapeutics

DOI: 10.4236/oalib.1114444, PP. 1-20

Subject Areas: Neurology, Artificial Intelligence, Psychiatry & Psychology

Keywords: Gut Brain Axis, Major Depressive Disorder, Microbiome, Metabolomics, Deep Learning, SHAP, Precision Nutrition, Explainable AI

Full-Text   Cite this paper   Add to My Lib

Abstract

Major depressive disorder (MDD) has been repeatedly linked to disruptions of the gut brain axis (GBA), yet practical decision systems that convert multi-omics patterns into patient-specific guidance remain limited. We present an end-to-end, explainable pipeline that learns putative GBA signatures of MDD from synthetic data and translates model attributions into hypothesis-driven nutritional and pharmacological suggestions. We simulated a cohort of N = 1,500 individuals (30% MDD) comprising 200 microbial taxa, 150 metabolites, and 7 clinical features. A regularized dense neural network with class weighting and early stopping was trained and compared with a Random Forest baseline; interpretability was provided by SHAP at global and local levels. On a 20% stratified hold-out test set the deep model achieved Accuracy = 0.98 and AUC = 0.998, with a confusion matrix of [[207, 3], [2, 88]]. Feature attributions concentrated on a compact subset of metabolites and taxa consistent with the planted effects in the simulator; RF importances corroborated these signals (e.g., Metabolite_120, 109, 40, 90; Species_198, 197). We further demonstrate a templated mapping from patient-level SHAP profiles to non-clinical recommendations dietary patterns, prebiotic/probiotic directions, and pathway hypotheses involving, for example, kynurenine metabolism, short-chain fatty acids, and bile acids intended to support clinician-led hypothesis generation rather than direct treatment. Because all data are simulated, performance estimates are optimistic and biological interpretations are illustrative. Nonetheless, the approach shows how multi-omics learning coupled with transparent explanations can organize heterogeneous GBA signals into actionable research hypotheses for precision psychiatry. Code and figures are fully reproducible from a single Colab notebook. Future work will validate the pipeline on real, harmonized cohorts, incorporate compositional microbiome statistics and calibration analyses, and assess generalization across sites and subgroups under clinical oversight.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2026). AI-Enhanced Gut Brain Axis Profiling for Major Depressive Disorder: Integrating Synthetic Multi-Omics, Deep Learning, and Interpretable Precision Therapeutics. Open Access Library Journal, 13, e14444. doi: http://dx.doi.org/10.4236/oalib.1114444.

References

[1]  Iyer, G. and Manoj, M. (2024) Neurobiological Perspective on the Gut-Brain Axis and Mental Health: A Review. International Journal of Interdisciplinary Ap-proaches in Psychology, 2, 599-618.
[2]  Bertollo, A.G., Santos, C.F., Bagatini, M.D. and Ignácio, Z.M. (2025) Hypothalamus-pituitary-Adrenal and Gut-Brain Axes in Biological Interaction Pathway of the Depression. Frontiers in Neurosci-ence, 19, Article 1541075. https://doi.org/10.3389/fnins.2025.1541075
[3]  Aljeradat, B., Kumar, D., Abdulmuizz, S., Kundu, M., Almealawy, Y.F., Batarseh, D.R., et al. (2024) Neu-romodulation and the Gut-Brain Axis: Therapeutic Mechanisms and Implica-tions for Gastrointestinal and Neurological Disorders. Pathophysiology, 31, 244-268. https://doi.org/10.3390/pathophysiology31020019
[4]  Singh, S.V., Ganguly, R., Jaiswal, K., Yadav, A.K., Kumar, R. and Pandey, A.K. (2023) Molecular Signalling during Cross Talk between Gut Brain Axis Regulation and Progression of Irritable Bowel Syndrome: A Comprehensive Review. World Journal of Clinical Cases, 11, 4458-4476. https://doi.org/10.12998/wjcc.v11.i19.4458
[5]  Morys, J., Małecki, A. and Nowacka-Chmielewska, M. (2024) Stress and the Gut-Brain Axis: An Inflamma-tory Perspective. Frontiers in Molecular Neuroscience, 17, Article ID: 1415567. https://doi.org/10.3389/fnmol.2024.1415567
[6]  Clerici, L., Bottari, D. and Bottari, B. (2025) Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Current Nutrition Re-ports, 14, Article No. 30. https://doi.org/10.1007/s13668-025-00619-2
[7]  Costa, A. and Lucarini, E. (2024) Treating Chronic Stress and Chronic Pain by Manipulating Gut Microbi-ota with Diet: Can We Kill Two Birds with One Stone? Nutritional Neuroscience, 28, 221-244. https://doi.org/10.1080/1028415x.2024.2365021
[8]  Lo-gan, A.C., Cordell, B., Pillai, S.D., Robinson, J.M. and Prescott, S.L. (2025) From Bacillus Criminalis to the Legalome: Will Neuromicrobiology Impact 21st Centu-ry Criminal Justice? Brain Sciences, 15, Article 984. https://doi.org/10.3390/brainsci15090984
[9]  Motger-Albertí, A. and Fer-nández-Real, J.M. (2023) Gut Microbiome and Cognitive Functions in Metabolic Diseases. In: Federici, M. and Menghini, R., Eds., Endocrinology, Springer In-ternational Publishing, 1-27. https://doi.org/10.1007/978-3-031-08115-6_12-1
[10]  Barron, D.S., Baker, J.T., Budde, K.S., Bzdok, D., Eickhoff, S.B., Friston, K.J., et al. (2021) Decision Models and Technology Can Help Psychiatry Develop Biomarkers. Frontiers in Psychiatry, 12, Article ID: 706655. https://doi.org/10.3389/fpsyt.2021.706655
[11]  Datta Burton, S., Mahfoud, T., Aicardi, C. and Rose, N. (2021) Clinical Translation of Computational Brain Models: Understanding the Salience of Trust in Clinician-Researcher Relation-ships. Interdisciplinary Science Reviews, 46, 138-157. https://doi.org/10.1080/03080188.2020.1840223
[12]  McGuire, M.F., Iyengar, M.S. and Mercer, D.W. (2011) Computational Approaches for Transla-tional Clinical Research in Disease Progression. Journal of Investigative Medi-cine, 59, 893-903. https://doi.org/10.2310/jim.0b013e318224d8cc
[13]  Woo, C., Chang, L.J., Lindquist, M.A. and Wager, T.D. (2017) Building Better Biomarkers: Brain Models in Translational Neuroimaging. Nature Neuroscience, 20, 365-377. https://doi.org/10.1038/nn.4478
[14]  van Klaveren, D., Varadhan, R., Kent, D.M., et al. (2020) The Predictive Approaches to Treatment Effect Heterogene-ity (PATH) Statement. Annals of Internal Medicine, 172, Article 776. https://doi.org/10.7326/l20-0427
[15]  Mridha, M.F., Keya, A.J., Hamid, M.A., Monowar, M.M. and Rahman, M.S. (2021) A Comprehensive Review on Fake News Detection with Deep Learning. IEEE Access, 9, 156151-156170. https://doi.org/10.1109/access.2021.3129329
[16]  Hazra, A., Choudhary, P. and Sheetal Singh, M. (2020) Recent Advances in Deep Learning Techniques and Its Applications: An Overview. In: Rizvanov, A.A., Singh, B.K. and Ganasala, P., Eds., Lecture Notes in Bioengineering, Springer, 103-122. https://doi.org/10.1007/978-981-15-6329-4_10
[17]  Nunnari, F., Bhu-vaneshwara, C., Ezema, A.O. and Sonntag, D. (2020) A Study on the Fusion of Pixels and Patient Metadata in CNN-Based Classification of Skin Lesion Images. In: Holzinger, A., Kieseberg, P., Tjoa, A. and Weippl, E., Eds., Lecture Notes in Computer Science, Springer International Publishing, 191-208. https://doi.org/10.1007/978-3-030-57321-8_11
[18]  Zantvoort, K., Scharfenberger, J., Boß, L., Lehr, D. and Funk, B. (2023) Finding the Best Match—A Case Study on the (Text-)Feature and Model Choice in Digital Mental Health Interventions. Journal of Healthcare Informatics Research, 7, 447-479. https://doi.org/10.1007/s41666-023-00148-z
[19]  Ke, H., Chen, D., Yao, Q., Tang, Y., Wu, J., Monaghan, J., et al. (2024) Deep Factor Learning for Accurate Brain Neuroimaging Data Analysis on Discrimination for Structural MRI and Functional MRI. IEEE/ACM Transactions on Computational Biology and Bioin-formatics, 21, 582-595. https://doi.org/10.1109/tcbb.2023.3252577
[20]  Simon, F., Weibels, S. and Zimmermann, T. (2025) Deep Parametric Portfolio Policies. No. 23-01. CFR Working Paper.
[21]  Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., et al. (2018) A Review of Classification Algorithms for EEG-Based Brain-Computer Interfaces: A 10 Year Update. Journal of Neural En-gineering, 15, Article 031005. https://doi.org/10.1088/1741-2552/aab2f2
[22]  Kottapalle, P., Tak, T.K., Kshirsagar, P.R., Ginnela, G. and Krishna Akula, V. (2025) QHF-CS: Quan-tum-Enhanced Heart Failure Prediction Using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data. Computers, Materials & Continua, 84, 3857-3892. https://doi.org/10.32604/cmc.2025.065287
[23]  Grabinski, J., Gavrikov, P., Keuper, J. and Keuper, M. (2022) Robust Models Are Less Over-Confident. Advances in Neural Information Processing Systems, 35, 39059-39075.
[24]  Sarkar, P.R. (2025) Artificial Intelligence Based Models for Predicting Foodborne Pathogen Risk in Public Health Systems. International Journal of Business and Economics Insights, 5, 205-237. https://doi.org/10.63125/7685ne21
[25]  Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., et al. (2020) From Local Explanations to Global Understanding with Explainable AI for Trees. Nature Machine Intelli-gence, 2, 56-67. https://doi.org/10.1038/s42256-019-0138-9
[26]  Li, Z. (2022) Extracting Spatial Effects from Machine Learning Model Using Local In-terpretation Method: An Example of SHAP and XGBoost. Computers, Environ-ment and Urban Systems, 96, Article 101845. https://doi.org/10.1016/j.compenvurbsys.2022.101845
[27]  Khachatryan, L., Xiang, Y., Ivanov, A., Glaab, E., Graham, G., Granata, I., et al. (2023) Results and Lessons Learned from the SBV IMPROVER Metagenomics Diagnostics for In-flammatory Bowel Disease Challenge. Scientific Reports, 13, Article No. 6303. https://doi.org/10.1038/s41598-023-33050-0
[28]  Vetter, J.S., Schultebraucks, K., Galatzer-Levy, I., Boeker, H., Brühl, A., Seifritz, E., et al. (2022) Predicting Non-Response to Multimodal Day Clinic Treatment in Se-verely Impaired Depressed Patients: A Machine Learning Approach. Scientific Reports, 12, Article No. 5455. https://doi.org/10.1038/s41598-022-09226-5
[29]  Shaik, T., Tao, X., Xie, H., Li, L., Higgins, N. and Velásquez, J.D. (2025) Towards Transparent Deep Learning in Medicine: Feature Contribution and Attention Mechanism-Based Explainability. Human-Centric Intelligent Systems, 5, 209-229. https://doi.org/10.1007/s44230-025-00104-7
[30]  Landi, I., Glicksberg, B.S., Lee, H., Cherng, S., Landi, G., Danieletto, M., et al. (2020) Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale. npj Digital Medicine, 3, Article No. 96. https://doi.org/10.1038/s41746-020-0301-z
[31]  D’haeseleer, P., Liang, S.D. and Somogyi, R. (2000) Genetic Network Inference: From Co-Expression Clus-tering to Reverse Engineering. Bioinformatics, 16, 707-726. https://doi.org/10.1093/bioinformatics/16.8.707
[32]  Roohi, E., Shoja-Sani, A., Goshayeshi, B. and Peyvan, A. (2025) Learning Rarefied Gas Dynamics with Physics-Enforced Neural Networks. arXiv:2509.06231.
[33]  Alshayeji, M.H. and Abed, S. (2025) Heart Disease Prediction by Tabular Modeling with Deep Learning Network and Interpretability. Machine Learning: Science and Tech-nology, 6, Article 035043. https://doi.org/10.1088/2632-2153/adfd39
[34]  Peixoto, R.S., Voolstra, C.R., Sweet, M., Duarte, C.M., Carvalho, S., Villela, H., et al. (2022) Harnessing the Microbiome to Prevent Global Biodiversity Loss. Nature Microbiology, 7, 1726-1735. https://doi.org/10.1038/s41564-022-01173-1
[35]  Lemon, K.P., Armitage, G.C., Relman, D.A. and Fischbach, M.A. (2012) Microbiota-targeted Therapies: An Ecological Perspective. Science Translational Medicine, 4, 137rv5. https://doi.org/10.1126/scitranslmed.3004183
[36]  Lange, L., Berg, G., Cernava, T., Champomier-Vergès, M., Charles, T., Cocolin, L., et al. (2022) Microbiome Ethics, Guiding Principles for Microbiome Research, Use and Knowledge Management. Environmental Microbiome, 17, Article No. 50. https://doi.org/10.1186/s40793-022-00444-y
[37]  Gihawi, A., Ge, Y., Lu, J., Puiu, D., Xu, A., Cooper, C.S., et al. (2023) Major Data Analysis Errors Invalidate Cancer Microbiome Findings. mBio, 14, e01607-23. https://doi.org/10.1128/mbio.01607-23
[38]  Hagenbeek, F.A., Roetman, P.J., Pool, R., Kluft, C., Harms, A.C., van Dongen, J., et al. (2020) Urinary Amine and Organic Acid Metabolites Evaluated as Markers for Childhood Aggression: The ACTION Biomarker Study. Frontiers in Psychiatry, 11, Article ID: 165. https://doi.org/10.3389/fpsyt.2020.00165
[39]  Dmitrenko, A., Reid, M. and Zamboni, N. (2022) A System Suitability Testing Platform for Untargeted, High-Resolution Mass Spectrometry. Frontiers in Molecular Biosciences, 9, Arti-cle ID: 1026184. https://doi.org/10.3389/fmolb.2022.1026184
[40]  Baker, E.S. and Patti, G.J. (2019) Perspectives on Data Analysis in Metabolomics: Points of Agreement and Disagreement from the 2018 ASMS Fall Workshop. Journal of the American Society for Mass Spectrometry, 30, 2031-2036.https://doi.org/10.1007/s13361-019-02295-3

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133