全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Research on Machine Translation Quality Evaluation of Academic Paper Abstracts: A Case Study of Foreign Language and Literature Papers

DOI: 10.4236/oalib.1114353, PP. 1-13

Subject Areas: Linguistics

Keywords: Machine Translation, Translation Quality, Paper Abstract, Evaluation

Full-Text   Cite this paper   Add to My Lib

Abstract

Machine translation as one of the important applications in the field of artificial intelligence, plays a crucial role in cross-lingual communication and information transmission. However, the quality of machine translation systems directly affects the accurate conveyance and understanding of information. This research aims to investigate the translation quality of different machine translation systems in translating abstracts of foreign language and literature papers. In this study, we selected Youdao Translate, DeepL, ERNIE Bot, and ChatGPT-3.5 as the research objects for machine translation, and evaluated and analyzed the academic paper abstracts translated by these four machine translation tools, exploring their performance in translating academic paper abstracts.

Cite this paper

Jia, S. (2025). Research on Machine Translation Quality Evaluation of Academic Paper Abstracts: A Case Study of Foreign Language and Literature Papers . Open Access Library Journal, 12, e14353. doi: http://dx.doi.org/10.4236/oalib.1114353.

References

[1]  冯志伟. 机器翻译——从梦想到现实[J]. 中国翻译, 1999(4): 38-41.
[2]  Hovy, E., King, M. and Popescu-Belis, A. (2002) Principles of Context-Based Machine Transla-tion Evaluation. Machine Translation, 17, 43-75. https://doi.org/10.1023/a:1025510524115
[3]  Haque, R., Hasanuzzaman, M. and Way, A. (2020) Analysing Terminology Translation Errors in Statistical and Neural Machine Translation. Machine Translation, 34, 149-195. https://doi.org/10.1007/s10590-020-09251-z
[4]  Hudelson, P. and Chappuis, F. (2024) Using Voice-to-Voice Machine Translation to Overcome Language Barriers in Clinical Communication: An Exploratory Study. Journal of General Internal Medicine, 39, 1095-1102. https://doi.org/10.1007/s11606-024-08641-w
[5]  Koplenig, A. and Wolfer, S. (2023) Languages with More Speakers Tend to Be Harder to (Ma-chine-)Learn. Scientific Reports, 13, Article No. 18521. https://doi.org/10.1038/s41598-023-45373-z
[6]  黎斌, 唐跃勤. There be句型在机器翻译软件中的对比研究[J]. 西南交通大学学报(社会科学版), 2005(2): 84-87.
[7]  黄海英, 冯剑军. 英汉专业翻译软件翻译质量的人工测评[J]. 中国科技翻译, 2008(1): 28-32.
[8]  潘幼博. 人工翻译是否将被机器替代? [J]. 中国科技翻译, 1990(1): 19-23.
[9]  魏长宏, 张春柏. 机器翻译的译后编辑[J]. 中国科技翻译, 2007(3): 22-24 9.
[10]  崔启亮, 李闻. 译后编辑错误类型研究——基于科技文本英汉机器翻译[J]. 中国科技翻译, 2015, 28(4): 19-22.
[11]  冯全功, 刘明. 译后编辑能力三维模型构建[J]. 外语界, 2018(3): 55-61.
[12]  冯志伟, 张灯柯. 机器翻译与人工翻译相辅相成[J]. 外国语(上海外国语大学学报), 2022(6): 77-87.
[13]  陈磊, 李泽世, 王鹏晓, 瞿灼芮, 曹晨宇, 刘红江. 学术论文标题翻译: 常用机器翻译质量评估指标的局限性与多维量化评估标准的构建[J]. 科技传播, 2023, 15(16): 43-46 50.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133