全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Spectral Theory for Frölicher Algebras via Locally Convex and Convenient Structures

DOI: 10.4236/oalib.1114279, PP. 1-20

Subject Areas: Algebraic Geometry, Functional Analysis, Special Theory of Relativity, Algebra

Keywords: Convenient Vector Spaces, Frö,licher Space, Infinite-Dimensional Analysis, Spectral Theory

Full-Text   Cite this paper   Add to My Lib

Abstract

This article develops a framework for extending spectral theory to Frölicher algebras, which define smoothness via curves and functionals rather than topological or bornological structures. Motivated by classical spectral theory in locally convex algebras and its smooth extension in convenient algebras, we compare and connect these three categories through their notions of smoothness and character spectra. Beginning with the Gelfand theory for locally convex algebras, we generalize spectral constructions to convenient algebras via smooth homomorphisms, and further to Frölicher algebras, defining the spectrum in terms of Frölicher-smooth homomorphisms. We construct a smooth Gelfand transform and show that every convenient algebra admits a canonical Frölicher structure, yielding a faithful functor, though not an essentially surjective one. We introduce the concept of Frölicher bialgebras and sketch possible extensions of spectral analysis in this context. This work offers a unified smooth spectral framework, bridging topological, convenient, and Frölicher settings, and provides new tools for infinite-dimensional geometry, global analysis, and noncommutative smooth structures.

Cite this paper

Pamba, J. (2025). Spectral Theory for Frölicher Algebras via Locally Convex and Convenient Structures. Open Access Library Journal, 12, e14279. doi: http://dx.doi.org/10.4236/oalib.1114279.

References

[1]  Allan, G.R. (1965) A Spectral Theory for Locally Convex Algebras. Proceedings of the London Mathematical Society, 3, 399-421. https://doi.org/10.1112/plms/s3-15.1.399
[2]  Beckenstein, E., Narici, L., and Suffel, C. (1990) Topological Algebras. In: North-Holland Mathematics Studies, Vol. 24, North-Holland.
[3]  Helemskii, A.Ya. (2006) Topological Homology of Locally Convex Algebras and Cyclic Homology. Springer.
[4]  Fragoulopoulou, M., Inoue, A., Weigt, M. and Zarakas, I. (2022) A Spectral Theory for Locally Convex Algebras. In: Fragoulopoulou, M., Inoue, A., et al., Eds., Generalized B-Algebras and Applica-tions, Springer International Publishing, 9-38. https://doi.org/10.1007/978-3-030-96433-7_2
[5]  Yahaghi, B.R. (2025) Spectrum in Alternative Topological Algebras and a New Look at Old Theorems. arXiv: 2401.00985. https://arxiv.org/abs/2401.00985
[6]  Wang, H. (2024) A Theory of Locally Convex Hopf Algebras. arXiv: 2402.12345. https://arxiv.org/abs/2402.12345
[7]  Kriegl, A. and Michor, P. (1997) The Conven-ient Setting of Global Analysis. American Mathematical Society. https://doi.org/10.1090/surv/053
[8]  Frölicher, A. and Nijenhuis, A. (1956) Theory of Vector-Valued Differential Forms. Indagationes Mathematicae (Proceedings), 59, 338-350. https://doi.org/10.1016/s1385-7258(56)50046-7
[9]  Frölicher, A. and Kriegl, A. (1988) Linear Spaces and Differentiation Theory. Wiley.
[10]  Kriegl, A., Michor, P. and Schachermayer, W. (1989) Characters on Algebras of Smooth Func-tions. Annals of Global Analysis and Geometry, 7, 85-92. https://doi.org/10.1007/bf00127859
[11]  Dugmore, B. and Ntumba, P.P. (2000) On Tangent Cones of Frölicher Spaces. Math. Subject Classification: 18F15, 26E15, 57R55.
[12]  Augustin Batubenge, T. and Herme Tshilombo, M. (2016) Notes on Pre-Frölicher Spaces. Quaestiones Mathematicae, 39, 1115-1129. https://doi.org/10.2989/16073606.2016.1261953
[13]  Palais, R.S. (1981) Real Alge-braic Differential Topology, Part I. Publish or Perish.
[14]  Iglesias-Zemmour, P. (2013) Diffeology. American Mathematical Society. https://doi.org/10.1090/surv/185

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133