全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Comparative Analysis of Anticholinergic Burden and Cognitive Decline in Elderly Patients on Long-Term Neuroleptic Therapy

DOI: 10.4236/oalib.1113511, PP. 1-17

Subject Areas: Psychiatry & Psychology

Keywords: Geriatric Psychopharmacology, Anticholinergic Burden, Cognitive Decline, Interpretable Machine Learning, Neuroleptic Therapy, SHAP Explainability

Full-Text   Cite this paper   Add to My Lib

Abstract

Elderly individuals undergoing long-term neuroleptic therapy are increasingly vulnerable to cognitive decline, a condition that significantly impairs quality of life and increases healthcare burden. One contributing factor is the cumulative anticholinergic burden from prescribed antipsychotic medications. This study aims to explore the relationship between anticholinergic load and cognitive impairment in aging patients using an interpretable machine learning framework. We developed a synthetic dataset of 1000 geriatric patient profiles with realistic distributions of clinical and demographic features, including age, comorbidity count, treatment duration, medication load, and baseline cognitive status. The binary target variable represented observed cognitive decline. Our approach involved robust preprocessing through KNN imputation, feature scaling, and one-hot encoding, followed by oversampling of the minority class using SMOTE. We trained and evaluated three predictive models—Random Forest, XGBoost, and Logistic Regression—using stratified cross-validation and hyperparameter tuning. Logistic regression outperformed the ensemble and tree-based models, achieving the highest ROC AUC of 0.702 on the test set. Feature importance analysis identified anticholinergic burden, age, and vascular disease as leading contributors to cognitive decline. Furthermore, SHAP (SHapley Additive exPlanations) values offered interpretable insights into individual prediction dynamics and global feature relevance. Logistic Regression outperformed XGBoost and Random Forest, achieving an ROC AUC improvement of 0.035 and 0.037 respectively, highlighting its superior discrimination capability in this setting. The findings validate the hypothesis that increased anticholinergic burden elevates cognitive risk and underscore the utility of transparent AI tools in medical decision-making. These results pave the way for integrating explainable machine learning into geriatric pharmacovigilance and cognitive health monitoring, with the potential to inform personalized treatment strategies and reduce adverse neurocognitive outcomes in vulnerable populations.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2025). Comparative Analysis of Anticholinergic Burden and Cognitive Decline in Elderly Patients on Long-Term Neuroleptic Therapy. Open Access Library Journal, 12, e3511. doi: http://dx.doi.org/10.4236/oalib.1113511.

References

[1]  Byerly, M.J., Weber, M.T., Brooks, D.L., Snow, L.R., Worley, M.A. and Lescouflair, E. (2001) Antipsychotic Medications and the Elderly. Drugs & Aging, 18, 45-61. https://doi.org/10.2165/00002512-200118010-00004
[2]  McShane, R., Keene, J., Gedling, K., Fairburn, C., Jacoby, R. and Hope, T. (1997) Do Neuroleptic Drugs Hasten Cognitive Decline in Dementia? Prospective Study with Necropsy Follow Up. British Medical Journal, 314, 266-266. https://doi.org/10.1136/bmj.314.7076.266
[3]  Jeste, D.V., Blazer, D., Casey, D., Meeks, T., Salzman, C., Schneider, L., et al. (2007) ACNP White Paper: Update on Use of Antipsychotic Drugs in Elderly Persons with Dementia. Neuropsychophar-macology, 33, 957-970. https://doi.org/10.1038/sj.npp.1301492
[4]  Liperoti, R., Sganga, F., Landi, F., Topinkova, E., Denkinger, M.D., van der Roest, H.G., et al. (2017) Antipsychotic Drug Interactions and Mortality among Nursing Home Residents with Cognitive Impairment. The Journal of Clinical Psychiatry, 78, e76-e82. https://doi.org/10.4088/jcp.15m10303
[5]  Marcinkowska, M., śniecikowska, J., Fajkis, N., Paśko, P., Franczyk, W. and Kołaczkowski, M. (2020) Management of Dementia-Related Psychosis, Agitation and Aggression: A Review of the Pharma-cology and Clinical Effects of Potential Drug Candidates. CNS Drugs, 34, 243-268. https://doi.org/10.1007/s40263-020-00707-7
[6]  Sharma, B., Das, S., Mazumder, A., Rautela, D.S., Tyagi, P.K. and Khurana, N. (2024) The Role of Neurotransmitter Receptors in Antipsychotic Medication Efficacy for Alzheimer’s-Related Psychosis. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 60, Article No. 75. https://doi.org/10.1186/s41983-024-00848-2
[7]  Bernardo, C.G., Singh, V. and Thompson, P.M. (2008) Safety and Efficacy of Psychopharmacological Agents Used to Treat the Psychiatric Sequelae of Common Neurological Disorders. Expert Opinion on Drug Safety, 7, 435-445. https://doi.org/10.1517/14740338.7.4.435
[8]  Gareri, P., De Fazio, P., Manfredi, V.G.L. and De Sarro, G. (2014) Use and Safety of Antipsychotics in Behavioral Disorders in Elderly People with Dementia. Journal of Clinical Psychopharmacology, 34, 109-123. https://doi.org/10.1097/jcp.0b013e3182a6096e
[9]  Klinken-berg, I., Sambeth, A. and Blokland, A. (2011) Acetylcholine and Attention. Behavioural Brain Research, 221, 430-442. https://doi.org/10.1016/j.bbr.2010.11.033
[10]  Wallace, T.L. and Bertrand, D. (2013) Importance of the Nicotinic Ace-tylcholine Receptor System in the Prefrontal Cortex. Biochemical Pharmacology, 85, 1713-1720. https://doi.org/10.1016/j.bcp.2013.04.001
[11]  Potter, A.S., Newhouse, P.A. and Bucci, D.J. (2006) Central Nicotinic Cholinergic Systems: A Role in the Cognitive Dysfunction in Attention-Deficit/Hyperactivity Disorder? Behavioural Brain Research, 175, 201-211. https://doi.org/10.1016/j.bbr.2006.09.015
[12]  Floresco, S.B. and Jentsch, J.D. (2010) Phar-macological Enhancement of Memory and Executive Functioning in Laboratory Animals. Neuropsychopharmacology, 36, 227-250. https://doi.org/10.1038/npp.2010.158
[13]  Collamati, A., Martone, A.M., Poscia, A., Brandi, V., Celi, M., Mar-zetti, E., et al. (2015) Anticholinergic Drugs and Negative Outcomes in the Older Population: From Biological Plausibility to Clinical Evidence. Aging Clinical and Experimental Research, 28, 25-35. https://doi.org/10.1007/s40520-015-0359-7
[14]  Attoh-Mensah, E., Loggia, G., Schumann-Bard, P., Morello, R., Des-catoire, P., Marcelli, C., et al. (2020) Adverse Effects of Anticholinergic Drugs on Cognition and Mobility: Cutoff for Impair-ment in a Cross-Sectional Study in Young–Old and Old–Old Adults. Drugs & Aging, 37, 301-310. https://doi.org/10.1007/s40266-019-00743-z
[15]  Cardwell, K., Hughes, C.M. and Ryan, C. (2015) The Association be-tween Anticholinergic Medication Burden and Health Related Outcomes in the ‘Oldest Old’: A Systematic Review of the Lit-erature. Drugs & Aging, 32, 835-848. https://doi.org/10.1007/s40266-015-0310-9
[16]  Green, A.R., Reifler, L.M., Bay-liss, E.A., Weffald, L.A. and Boyd, C.M. (2019) Drugs Contributing to Anticholinergic Burden and Risk of Fall or Fall-Related Injury among Older Adults with Mild Cognitive Impairment, Dementia and Multiple Chronic Conditions: A Retrospective Cohort Study. Drugs & Aging, 36, 289-297. https://doi.org/10.1007/s40266-018-00630-z
[17]  Carrière, I., Fourri-er-Reglat, A., Dartigues, J., Rouaud, O., Pasquier, F., Ritchie, K., et al. (2009) Drugs with Anticholinergic Properties, Cogni-tive Decline, and Dementia in an Elderly General Population. Archives of Internal Medicine, 169, 1317-1324. https://doi.org/10.1001/archinternmed.2009.229
[18]  Mehta, R.S., Kochar, B.D., Kennelty, K., Ernst, M.E. and Chan, A.T. (2021) Emerging Approaches to Polypharmacy among Older Adults. Nature Aging, 1, 347-356. https://doi.org/10.1038/s43587-021-00045-3
[19]  Mair, A., Wilson, M. and Dreischulte, T. (2020) Addressing the Challenge of Polypharmacy. Annual Review of Pharmacology and Toxicology, 60, 661-681. https://doi.org/10.1146/annurev-pharmtox-010919-023508
[20]  Alhozim, B.M.A., Almutairi, E.T., Albutyan, Z.Y., Al-zahrani, N.A., Alonizy, M.M., Albutyan, L.Y., et al. (2024) The Impact of Polypharmacy on Drug Efficacy and Safety in Geri-atric Populations. Egyptian Journal of Chemistry, 67, 1533-1540. https://doi.org/10.21608/ejchem.2024.337875.10834
[21]  Edelman, E.J., Gordon, K.S., Glover, J., McNicholl, I.R., Fiellin, D.A. and Justice, A.C. (2013) The Next Therapeutic Challenge in HIV: Polypharmacy. Drugs & Aging, 30, 613-628. https://doi.org/10.1007/s40266-013-0093-9
[22]  Keine, D., Zelek, M., Walker, J.Q. and Sabbagh, M.N. (2019) Polypharmacy in an Elderly Population: Enhancing Medication Management through the Use of Clinical Decision Support Software Platforms. Neurology and Therapy, 8, 79-94. https://doi.org/10.1007/s40120-019-0131-6
[23]  Foluke, E. (2024) Machine Learning for Chronic Kidney Disease Progression Modelling: Leveraging Data Science to Optimize Patient Management. World Journal of Advanced Research and Reviews, 24, 453-475. https://doi.org/10.30574/wjarr.2024.24.3.3730
[24]  Levy, J.J., Lima, J.F., Miller, M.W., Freed, G.L., O'Malley, A.J. and Emeny, R.T. (2022) Machine Learning Approaches for Hospital Acquired Pressure Injuries: A Retrospective Study of Elec-tronic Medical Records. Frontiers in Medical Technology, 4, Article 926667. https://doi.org/10.3389/fmedt.2022.926667
[25]  Filippis, R.D. and Foysal, A.A. (2025) A Machine Learning Approach to Predicting Treatment Outcomes in Bipolar Depression with OCD Comorbidity. Open Access Library, 12, 1-20. https://doi.org/10.4236/oalib.1112894
[26]  Alaa Ahmed M. and van der Schaar, M. (2017) Deep Multi-Task Gaussian Processes for Survival Analysis with Competing Risks. Proceedings of the 31st International Conference on Neural Infor-mation Processing Systems, Long Beach, 4-9 December 2017, 2326-2334.
[27]  Patra, S.S., Harshvardhan, G.M., Gouri-saria, M.K., Mohanty, J.R. and Choudhury, S. (2021) Emerging Healthcare Problems in High-Dimensional Data and Dimen-sion Reduction. In: Lecture Notes on Data Engineering and Communications Technologies, Springer, 25-49. https://doi.org/10.1007/978-981-16-0538-3_2
[28]  Dinov, I.D. (2016) Methodological Challenges and Analytic Oppor-tunities for Modeling and Interpreting Big Healthcare Data. GigaScience, 5, 1-15. https://doi.org/10.1186/s13742-016-0117-6
[29]  Wilson, A. and Anwar, M.R. (2024) The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. International Transactions on Artificial Intelligence, 3, 97-107. https://doi.org/10.33050/italic.v3i1.656
[30]  Bühlmann, P. and Van De Geer, S. (2011) Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Science & Business Media.
[31]  Salerno, S. and Li, Y. (2023) High-dimensional Survival Analysis: Methods and Applications. Annual Review of Statistics and Its Application, 10, 25-49. https://doi.org/10.1146/annurev-statistics-032921-022127
[32]  Dang, M., Xiang, H., Wang, Y., Li, F. and Nguyen, T.N. (2022) Explainable Artificial Intelligence: A Comprehensive Review. Artificial Intelligence Review, 55, 3503-3568.
[33]  Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., et al. (2023) Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cognitive Computation, 16, 45-74. https://doi.org/10.1007/s12559-023-10179-8
[34]  Machlev, R., Heistrene, L., Perl, M., Levy, K.Y., Belikov, J., Mannor, S., et al. (2022) Explainable Artificial Intelligence (XAI) Techniques for Energy and Power Systems: Review, Challenges and Opportunities. Energy and AI, 9, Article 100169. https://doi.org/10.1016/j.egyai.2022.100169
[35]  Adadi, A. and Ber-rada, M. (2018) Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/access.2018.2870052
[36]  Raghunathan, T.E. (2021) Synthetic Data. Annual Review of Statistics and Its Application, 8, 129-140. https://doi.org/10.1146/annurev-statistics-040720-031848
[37]  de Melo, C.M., Torralba, A., Guibas, L., DiCarlo, J., Chellappa, R. and Hodgins, J. (2022) Next-Generation Deep Learning Based on Simulators and Synthetic Data. Trends in Cognitive Sciences, 26, 174-187. https://doi.org/10.1016/j.tics.2021.11.008
[38]  Smith, D.M., Clarke, G.P. and Harland, K. (2009) Improving the Syn-thetic Data Generation Process in Spatial Microsimulation Models. Environment and Planning A: Economy and Space, 41, 1251-1268. https://doi.org/10.1068/a4147
[39]  Nicolaie, M.A., Füssenich, K., Ameling, C. and Boshuizen, H.C. (2023) Constructing Synthetic Populations in the Age of Big Data. Population Health Metrics, 21, Article No. 19. https://doi.org/10.1186/s12963-023-00319-5
[40]  Kopec, J.A., Finès, P., Manuel, D.G., Buckeridge, D.L., Flanagan, W.M., Oderkirk, J., et al. (2010) Validation of Population-Based Disease Simulation Models: A Review of Concepts and Methods. BMC Public Health, 10, Article No. 710. https://doi.org/10.1186/1471-2458-10-710
[41]  Kingston, A., Comas-Herrera, A. and Jagger, C. (2018) Forecasting the Care Needs of the Older Population in England over the Next 20 Years: Estimates from the Population Ageing and Care Simulation (PACSim) Modelling Study. The Lancet Public Health, 3, e447-e455. https://doi.org/10.1016/s2468-2667(18)30118-x
[42]  Groves-Kirkby, N., Wakeman, E., Patel, S., Hinch, R., Poot, T., Pearson, J., et al. (2023) Large-Scale Calibration and Simulation of COVID-19 Epidemiologic Scenarios to Support Healthcare Planning. Epidemics, 42, Article 100662. https://doi.org/10.1016/j.epidem.2022.100662
[43]  Badr, H.S., Zaitchik, B.F., Kerr, G.H., Nguyen, N.H., Chen, Y., Hinson, P., et al. (2023) Unified Real-Time Environmental-Epidemiological Data for Mul-tiscale Modeling of the COVID-19 Pandemic. Scientific Data, 10, Article No. 367. https://doi.org/10.1038/s41597-023-02276-y
[44]  Maringe, C., Benitez Majano, S., Exarchakou, A., Smith, M., Rachet, B., Belot, A., et al. (2020) Reflection on Modern Methods: Trial Emulation in the Presence of Immortal-Time Bias. Assessing the Benefit of Major Surgery for Elderly Lung Cancer Patients Using Observational Data. International Journal of Epidemiology, 49, 1719-1729. https://doi.org/10.1093/ije/dyaa057
[45]  Lee, J.Y. and Styczynski, M.P. (2018) NS-kNN: A Modified K-Nearest Neighbors Approach for Imputing Metabolomics Data. Metabolomics, 14, Article No. 153. https://doi.org/10.1007/s11306-018-1451-8
[46]  De Silva, H. and Perera, A.S. (2017) Evolutionary K-Nearest Neighbor Imputation Algorithm for Gene Expression Data. International Journal on Advances in ICT for Emerging Regions, 10, 11-18. https://doi.org/10.4038/icter.v10i1.7183
[47]  Keerin, P. and Boongoen, T. (2022) Estimation of Missing Values in As-tronomical Survey Data: An Improved Local Approach Using Cluster Directed Neighbor Selection. Information Processing & Management, 59, Article 102881. https://doi.org/10.1016/j.ipm.2022.102881
[48]  Das, C., Bose, S., Chattopadhyay, M. and Chattopadhyay, S. (2016) A Novel Distance-Based Iterative Sequential KNN Algorithm for Estimation of Missing Values in Microarray Gene Expression Data. International Journal of Bioinformatics Research and Applications, 12, Article 312. https://doi.org/10.1504/ijbra.2016.080719
[49]  Luengo, J., García, S. and Herrera, F. (2011) On the Choice of the Best Imputation Methods for Missing Values Considering Three Groups of Classification Methods. Knowledge and Information Systems, 32, 77-108. https://doi.org/10.1007/s10115-011-0424-2
[50]  Lakshminarayan, K., Harp, S.A. and Samad, T. (1999) Imputation of Missing Data in Industrial Databases. Applied Intelligence, 11, 259-275. https://doi.org/10.1023/a:1008334909089
[51]  Aljuaid, T. and Sasi, S. (2016) Proper Imputation Techniques for Miss-ing Values in Data Sets. 2016 International Conference on Data Science and Engineering, Cochin, 23-25 August 2016, 1-5. https://doi.org/10.1109/icdse.2016.7823957
[52]  Huisman, M. (2009) Imputation of Missing Network Data: Some Sim-ple Procedures. Journal of Social Structure, 10, 1-29.
[53]  Aubaidan, B.H., Kadir, R.A. and Ijab, M.T. (2024) A Compara-tive Analysis of Smote and CSSF Techniques for Diabetes Classification Using Imbalanced Data. Journal of Computer Science, 20, 1146-1165. https://doi.org/10.3844/jcssp.2024.1146.1165
[54]  Veerla, S., Devadasan, A.V., Masum, M., Chow-dhury, M. and Shahriar, H. (2024) E-SMOTE: Entropy Based Minority Oversampling for Heart Failure and AIDS Clinical Trails Analysis. 2024 IEEE 48th Annual Computers, Software, and Applications Conference, Osaka, 2-4 July 2024, 1841-1846. https://doi.org/10.1109/compsac61105.2024.00291
[55]  Gayane, G. (2024) Explainable Artificial Intelli-gence: Methods and Evaluation. PhD Dissertation, Old Dominion University.
[56]  Muralidhara, C.K.B. (2024) Interpretabil-ity of Classification & Regression Ensemble Models.
[57]  Tsai, C.P., Yeh, C.-K. and Ravikumar, P. (2023) Faith-Shap: The Faithful Shapley Interaction Index. Journal of Machine Learning Research, 24, 1-42.
[58]  Alsaleh, M.M., Allery, F., Choi, J.W., Hama, T., McQuillin, A., Wu, H., et al. (2023) Prediction of Disease Comorbidity Using Explainable Artificial Intelligence and Machine Learning Techniques: A Systematic Review. International Journal of Medical Informatics, 175, Article 105088. https://doi.org/10.1016/j.ijmedinf.2023.105088
[59]  Mohanty, S.D., Lekan, D., McCoy, T.P., Jenkins, M. and Manda, P. (2022) Machine Learning for Predicting Readmission Risk among the Frail: Explainable AI for Healthcare. Patterns, 3, Arti-cle 100395. https://doi.org/10.1016/j.patter.2021.100395
[60]  Bloomingdale, P., Karelina, T., Ramakrishnan, V., Bakshi, S., Véronneau-Veilleux, F., Moye, M., et al. (2022) Hallmarks of Neurodegenerative Disease: A Systems Pharmacology Per-spective. Pharmacometrics & Systems Pharmacology, 11, 1399-1429. https://doi.org/10.1002/psp4.12852
[61]  Mosta-favi, S., Gaiteri, C., Sullivan, S.E., White, C.C., Tasaki, S., Xu, J., et al. (2018) A Molecular Network of the Aging Human Brain Provides Insights into the Pathology and Cognitive Decline of Alzheimer’s Disease. Nature Neuroscience, 21, 811-819. https://doi.org/10.1038/s41593-018-0154-9
[62]  Geerts, H. (2025) Quantitative Systems Pharmacology Development and Application in Neuroscience. In: Handbook of Experimental Pharmacology, Springer, 1-50. https://doi.org/10.1007/164_2024_739
[63]  Karalis, V.D. (2024) The Integration of Artificial Intelligence into Clinical Practice. Applied Biosciences, 3, 14-44. https://doi.org/10.3390/applbiosci3010002
[64]  Albahri, A.S., Duhaim, A.M., Fadhel, M.A., Alnoor, A., Baqer, N.S., Alzubaidi, L., et al. (2023) A Systematic Review of Trustworthy and Explainable Artifi-cial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion. Information Fusion, 96, 156-191. https://doi.org/10.1016/j.inffus.2023.03.008
[65]  de Lange, E.C.M., van den Brink, W., Yamamoto, Y., de Witte, W.E.A. and Wong, Y.C. (2017) Novel CNS Drug Discovery and Development Approach: Model-Based Integration to Predict Neu-ro-Pharmacokinetics and Pharmacodynamics. Expert Opinion on Drug Discovery, 12, 1207-1218. https://doi.org/10.1080/17460441.2017.1380623
[66]  Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., et al. (2019) Applications of Machine Learning in Drug Discovery and Development. Nature Reviews Drug Discov-ery, 18, 463-477. https://doi.org/10.1038/s41573-019-0024-5
[67]  de Vries, E.G.E., Kist de Ruijter, L., Lub-de Hooge, M.N., Dierckx, R.A., Elias, S.G. and Oosting, S.F. (2018) Integrating Molecular Nuclear Imaging in Clinical Research to Im-prove Anticancer Therapy. Nature Reviews Clinical Oncology, 16, 241-255. https://doi.org/10.1038/s41571-018-0123-y

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133