全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Clinical Strategies for Managing Anticholinergic Toxicity in Overdose vs. Neuroleptic Malignant Syndrome: Diagnostic Challenges and Therapeutic Interventions

DOI: 10.4236/oalib.1113510, PP. 1-19

Subject Areas: Diagnostics, Psychiatry & Psychology, Drugs & Devices, Artificial Intelligence

Keywords: Anticholinergic Toxicity, Neuroleptic Malignant Syndrome, Clinical Toxicology, Machine Learning, Biomarkers, Emergency Medicine

Full-Text   Cite this paper   Add to My Lib

Abstract

Neuroleptic Malignant Syndrome (NMS) and anticholinergic toxicity are two different but clinically similar disorders that are commonly seen in neuropsychiatric and emergency toxicological settings. Rapid differential diagnosis is made more difficult by the symptoms of both disorders, which frequently include delirium, heat, and autonomic instability. Interventions that result from misidentification may be detrimental or ineffectual. Using a machine learning-driven methodology, this work attempts to systematically compare these conditions in order to facilitate prompt and precise clinical decision-making. Random Forest, XGBoost, and Support Vector Machine (SVM) were the three supervised classifiers we used to categorize 450 patient cases into three diagnostic categories: anticholinergic toxicity (n = 189), NMS (n = 170), and other conditions (n = 91). Feature inputs included clinical signs, symptoms, and laboratory biomarkers. All models demonstrated high accuracy (96% - 97%), with the Random Forest classifier slightly outperforming others in F1-scores. Feature importance analysis and SHAP explainability techniques revealed creatine kinase, white blood cell (WBC) count, mydriasis, and dry mucous membranes as the most discriminative features. Specifically, creatine kinase and WBC count were significantly elevated in NMS cases, while anticholinergic toxicity was marked by mydriasis and dry mucous membranes. Treatment protocol comparison further highlighted the clinical need for precise diagnosis. Anticholinergic toxicity often requires supportive care with benzodiazepines and, in some cases, physostigmine, whereas NMS mandates aggressive cooling, dopamine agonist therapy, and intensive monitoring. This study demonstrates the utility of machine learning models in enhancing diagnostic accuracy for toxic syndromes with overlapping presentations. Integrating algorithmic predictions with clinical expertise can substantially improve patient outcomes and guide personalized treatment interventions.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2025). Clinical Strategies for Managing Anticholinergic Toxicity in Overdose vs. Neuroleptic Malignant Syndrome: Diagnostic Challenges and Therapeutic Interventions. Open Access Library Journal, 12, e3510. doi: http://dx.doi.org/10.4236/oalib.1113510.

References

[1]  Oruch, R., Pryme, I., Engelsen, B. and Lund, A. (2017) Neuroleptic Malignant Syndrome: An Easily Overlooked Neurologic Emergency. Neuropsychiatric Disease and Treatment, 13, 161-175. https://doi.org/10.2147/ndt.s118438
[2]  Velamoor, R. (2017) Neuroleptic Malignant Syndrome: A Neuro-Psychiatric Emergency: Recognition, Prevention, and Management. Asian Journal of Psychiatry, 29, 106-109. https://doi.org/10.1016/j.ajp.2017.05.004
[3]  Berman, B.D. (2011) Neuro-leptic Malignant Syndrome: A Review for Neurohospitalists. The Neurohospitalist, 1, 41-47. https://doi.org/10.1177/1941875210386491
[4]  Saghafi, O. and Sankoff, J. (2013) The Patient Withneuroleptic Ma-lignant Syndrome in the Emergency Department. In: Zun, L.S., Ed., Behavioral Emergencies for the Emergency Physician, Cambridge University Press, 190-196. https://doi.org/10.1017/cbo9781139088077.031
[5]  Nishtala, P.S., Salahudeen, M.S. and Hilmer, S.N. (2016) Anticholinergics: Theoretical and Clinical Overview. Expert Opinion on Drug Safety, 15, 753-768. https://doi.org/10.1517/14740338.2016.1165664
[6]  Dawson, A.H. and Buckley, N.A. (2015) Pharmacolog-ical Management of Anticholinergic Delirium—Theory, Evidence and Practice. British Journal of Clinical Pharmacology, 81, 516-524. https://doi.org/10.1111/bcp.12839
[7]  Salahudeen, M.S., Duffull, S.B. and Nishtala, P.S. (2014) Impact of Anticholinergic Discontinuation on Cognitive Outcomes in Older People: A Systematic Review. Drugs & Aging, 31, 185-192.
[8]  Pileggi, D.J. and Cook, A.M. (2016) Neuroleptic Malignant Syndrome: Focus on Treatment and Rechallenge. Annals of Pharmacotherapy, 50, 973-981. https://doi.org/10.1177/1060028016657553
[9]  Picard, L.S., Lindsay, S., Strawn, J.R., Kaneria, R.M., Patel, N.C. and Keck, P.E. (2008) Atypical Neuroleptic Malignant Syndrome: Diagnostic Contro-versies and Considerations. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 28, 530-535. https://doi.org/10.1592/phco.28.4.530
[10]  Augusto, C. and Grassi, L. (2011) Delirium: Acute Confusional States in Palli-ative Medicine. Oxford University Press.
[11]  Leonard, M.M., Agar, M., Spiller, J.A., Davis, B., Mohamad, M.M., Meagher, D.J., et al. (2014) Delirium Diagnostic and Classification Challenges in Palliative Care: Subsyndromal Delirium, Comorbid Delirium-Dementia, and Psychomotor Subtypes. Journal of Pain and Symptom Management, 48, 199-214. https://doi.org/10.1016/j.jpainsymman.2014.03.012
[12]  Hasan, S. and Buckley, P. (1998) Novel Antipsychotics and the Neuroleptic Malignant Syndrome: A Review and Critique. American Journal of Psychiatry, 155, 1113-1116. https://doi.org/10.1176/ajp.155.8.1113
[13]  Auvin, S., Hartman, A.L., Desnous, B., Moreau, A., Alberti, C., Delanoe, C., et al. (2012) Diagnosis Delay in West Syndrome: Misdiagnosis and Consequences. European Journal of Pediatrics, 171, 1695-1701. https://doi.org/10.1007/s00431-012-1813-6
[14]  Triplett, J.D., Qiu, J., O’Brien, B., Gopinath, S., Trewin, B., Spring, P.J., et al. (2022) Diagnosis, Differential Diagnosis and Misdiagnosis of Susac Syndrome. European Journal of Neu-rology, 29, 1771-1781. https://doi.org/10.1111/ene.15317
[15]  Funder, J.W., Carey, R.M., Mantero, F., Murad, M.H., Reincke, M., Shibata, H., et al. (2016) The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treat-ment: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 101, 1889-1916. https://doi.org/10.1210/jc.2015-4061
[16]  Sekijima, Y., Ueda, M., Koike, H., Misawa, S., Ishii, T. and Ando, Y. (2018) Diagnosis and Management of Transthyretin Familial Amyloid Polyneuropathy in Japan: Red-Flag Symptom Clusters and Treatment Algorithm. Orphanet Journal of Rare Diseases, 13, Article No. 6. https://doi.org/10.1186/s13023-017-0726-x
[17]  Vanegas-Arroyave, N., Caroff, S.N., Citrome, L., Crasta, J., McIntyre, R.S., Meyer, J.M., et al. (2024) An Evidence-Based Update on Anticholinergic Use for Drug-Induced Movement Disorders. CNS Drugs, 38, 239-254. https://doi.org/10.1007/s40263-024-01078-z
[18]  Huarcaya-Victoria, J., Castillo, C. and Her-rera, D. (2019) Síndrome neuroléptico maligno debido a ziprasidona: Reporte de un caso. Revista de Neuro-Psiquiatria, 82, 298-303. https://doi.org/10.20453/rnp.v82i4.3652
[19]  Black, W.C. and Welch, H.G. (1993) Advances in Diagnostic Im-aging and Overestimations of Disease Prevalence and the Benefits of Therapy. New England Journal of Medicine, 328, 1237-1243. https://doi.org/10.1056/nejm199304293281706
[20]  Van den Bruel, A., Cleemput, I., Aertgeerts, B., Ramaekers, D. and Buntinx, F. (2007) The Evaluation of Diagnostic Tests: Evidence on Technical and Diagnostic Accuracy, Impact on Patient Outcome and Cost-Effectiveness Is Needed. Journal of Clinical Epidemiology, 60, 1116-1122. https://doi.org/10.1016/j.jclinepi.2007.03.015
[21]  Lau, J., Ioannidis, J.P.A., Balk, E.M., Milch, C., Terrin, N., Chew, P.W., et al. (2001) Diagnosing Acute Cardiac Ischemia in the Emergency Department: A Systematic Review of the Accuracy and Clinical Effect of Current Technologies. Annals of Emergency Medicine, 37, 453-460. https://doi.org/10.1067/mem.2001.114903
[22]  Caliendo, A.M., Gilbert, D.N., Ginocchio, C.C., Hanson, K.E., May, L., Quinn, T.C., et al. (2013) Better Tests, Better Care: Improved Diagnostics for Infectious Diseases. Clinical Infectious Diseas-es, 57, S139-S170. https://doi.org/10.1093/cid/cit578
[23]  Adlung, L., Cohen, Y., Mor, U. and Elinav, E. (2021) Machine Learning in Clinical Decision Making. Med, 2, 642-665. https://doi.org/10.1016/j.medj.2021.04.006
[24]  Debnath, S., Barnaby, D.P., Coppa, K., Makhnevich, A., Kim, E.J., Chatterjee, S., et al. (2020) Machine Learning to Assist Clinical Deci-sion-Making during the COVID-19 Pandemic. Bioelectronic Medicine, 6, Article No. 14. https://doi.org/10.1186/s42234-020-00050-8
[25]  Buchlak, Q.D., Esmaili, N., Leveque, J., Farrokhi, F., Bennett, C., Pic-cardi, M., et al. (2019) Machine Learning Applications to Clinical Decision Support in Neurosurgery: An Artificial Intelligence Augmented Systematic Review. Neurosurgical Review, 43, 1235-1253. https://doi.org/10.1007/s10143-019-01163-8
[26]  Feinstein, A.R. (1974) An Analysis of Diagnostic Reasoning. 3. The Construction of Clinical Algorithms. The Yale Journal of Biology and Medicine, 47, 5-32.
[27]  Kononenko, I. (2001) Ma-chine Learning for Medical Diagnosis: History, State of the Art and Perspective. Artificial Intelligence in Medicine, 23, 89-109.
[28]  Yousaf Gill, A., Saeed, A., Rasool, S., Husnain, A. and Khawar Hussain, H. (2023) Revolutionizing Healthcare: How Machine Learning Is Transforming Patient Diagnoses—A Comprehensive Review of AI’s Impact on Medical Diagnosis. Journal of World Science, 2, 1638-1652. https://doi.org/10.58344/jws.v2i10.449
[29]  Sezer, C. and Tekin, F.C. (2023) Persistent High Fever after Metchloropramide Treatment; Neuroleptic Malignant Syndrome. Journal of Emergency Medicine Case Reports, 13, 101-103. https://doi.org/10.33706/jemcr.1112956
[30]  Pelonero, A.L., Levenson, J.L. and Pandurangi, A.K. (1998) Neuroleptic Malignant Syndrome: A Review. Psychiatric Services, 49, 1163-1172. https://doi.org/10.1176/ps.49.9.1163
[31]  Buckley, P.F. and Hutchinson, M. (1995) Neuroleptic Malignant Syndrome. Journal of Neurology, Neurosurgery & Psychiatry, 58, 271-273. https://doi.org/10.1136/jnnp.58.3.271
[32]  Youngstrom, E.A., Choukas-Bradley, S., Calhoun, C.D. and Jensen-Doss, A. (2015) Clinical Guide to the Evidence-Based Assessment Ap-proach to Diagnosis and Treatment. Cognitive and Behavioral Practice, 22, 20-35. https://doi.org/10.1016/j.cbpra.2013.12.005
[33]  Neighbors, H.W., Trierweiler, S.J., Ford, B.C. and Muroff, J.R. (2003) Racial Differences in DSM Diagnosis Using a Semi-Structured Instrument: The Importance of Clinical Judgment in the Diag-nosis of African Americans. Journal of Health and Social Behavior, 44, 237-256. https://doi.org/10.2307/1519777
[34]  Punga, A.R., Maddison, P., Heckmann, J.M., Guptill, J.T. and Evoli, A. (2022) Epi-demiology, Diagnostics, and Biomarkers of Autoimmune Neuromuscular Junction Disorders. The Lancet Neurology, 21, 176-188. https://doi.org/10.1016/s1474-4422(21)00297-0
[35]  Kijpaisalratana, N., Sanglertsinlapachai, D., Techaratsami, S., Musikatavorn, K. and Saoraya, J. (2022) Machine Learning Algorithms for Early Sepsis Detection in the Emergency Department: A Retrospective Study. International Journal of Medical Informatics, 160, Article 104689. https://doi.org/10.1016/j.ijmedinf.2022.104689
[36]  Meyer, A., Zverinski, D., Pfahringer, B., Kempfert, J., Kuehne, T., Sündermann, S.H., et al. (2018) Machine Learning for Real-Time Prediction of Complications in Critical Care: A Retrospec-tive Study. The Lancet Respiratory Medicine, 6, 905-914. https://doi.org/10.1016/s2213-2600(18)30300-x
[37]  Kavzoglu, T. and Teke, A. (2022) Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arabian Journal for Science and Engineering, 47, 7367-7385. https://doi.org/10.1007/s13369-022-06560-8
[38]  Abedi, R., Costache, R., Shafizadeh-Moghadam, H. and Pham, Q.B. (2021) Flash-Flood Susceptibility Mapping Based on XGBoost, Random Forest and Boosted Regression Trees. Geocarto In-ternational, 37, 5479-5496. https://doi.org/10.1080/10106049.2021.1920636
[39]  Ehrt, U., Broich, K., Larsen, J.P., Ballard, C. and Aarsland, D. (2009) Use of Drugs with Anticholinergic Effect and Impact on Cognition in Parkinson's Dis-ease: A Cohort Study. Journal of Neurology, Neurosurgery & Psychiatry, 81, 160-165. https://doi.org/10.1136/jnnp.2009.186239
[40]  Chiappini, S., Mosca, A., Miuli, A., Semeraro, F.M., Mancusi, G., Santovito, M.C., et al. (2022) Misuse of Anticholinergic Medications: A Systematic Review. Biomedicines, 10, Article 355. https://doi.org/10.3390/biomedicines10020355
[41]  Soulaidopoulos, S., Sinakos, E., Dimopoulou, D., Vettas, C., Cho-longitas, E. and Garyfallos, A. (2017) Anticholinergic Syndrome Induced by Toxic Plants. World Journal of Emergency Medi-cine, 8, 297-301. https://doi.org/10.5847/wjem.j.1920-8642.2017.04.009
[42]  Pullen, G.P., Best, N.R. and Maguire, J. (1984) Anticholinergic Drug Abuse: A Common Problem? British Medical Journal (Clinical Research Ed.), 289, 612-613. https://doi.org/10.1136/bmj.289.6445.612
[43]  Pappano, A.J. (2018) Cholinoceptor-Activating & Cholinester-ase-Inhibiting Drugs. Basic & Clinical Pharmacology. McGraw Hill Professional, 107-123.
[44]  Collamati, A., Martone, A.M., Poscia, A., Brandi, V., Celi, M., Marzetti, E., et al. (2015) Anticholinergic Drugs and Negative Outcomes in the Older Popula-tion: From Biological Plausibility to Clinical Evidence. Aging Clinical and Experimental Research, 28, 25-35. https://doi.org/10.1007/s40520-015-0359-7
[45]  Ananth, J., Aduri, K., Parameswaran, S. and Gunatilake, S. (2004) Neuroleptic Malignant Syndrome: Risk Factors, Pathophysiology, and Treatment. Acta Neuropsychiatrica, 16, 219-228. https://doi.org/10.1111/j.0924-2708.2004.00085.x
[46]  Chiew, A.L. and Buckley, N.A. (2021) The Serotonin Toxidrome: Shortfalls of Current Diagnostic Criteria for Related Syndromes. Clinical Toxicology, 60, 143-158. https://doi.org/10.1080/15563650.2021.1993242
[47]  Hall, R.C.W., Hall, R.C.W. and Chapman, M. (2006) Neuroleptic Malignant Syndrome in the Elderly: Diagnostic Criteria, Incidence, Risk Factors, Pathophysiology, and Treatment. Clinical Geriatrics, 14, 39-46.
[48]  Kulikowski, J. and Parthasarathi, U. (2019) Special Syndromes: Serotonin Syndrome, Neurolep-tic Malignant Syndrome, and Catatonia. In: Fenn, H., Hategan, A. and Bourgeois, J., Eds., Inpatient Geriatric Psychiatry: Op-timum Care, Emerging Limitations, and Realistic Goals, Springer International Publishing, 277-292. https://doi.org/10.1007/978-3-030-10401-6_15
[49]  Malek, N. and Baker, M.R. (2016) Common Toxidromes in Move-ment Disorder Neurology. Postgraduate Medical Journal, 93, 326-332. https://doi.org/10.1136/postgradmedj-2016-134254
[50]  Frain, J. (2025). Exploring Symptoms—An Evidence‐Based Approach to the Patient History. Wiley. https://doi.org/10.1002/9781394218844
[51]  Sood, R., Law, G.R. and Ford, A.C. (2014) Diagnosis of IBS: Symptoms, Symptom-Based Criteria, Biomarkers or ‘Psychomarkers’? Nature Reviews Gastroenter-ology & Hepatology, 11, 683-691. https://doi.org/10.1038/nrgastro.2014.127
[52]  Chen, Z.S., Kulkarni, P., Galatzer-Levy, I.R., Bigio, B., Nasca, C. and Zhang, Y. (2022) Modern Views of Machine Learning for Precision Psychiatry. Patterns, 3, Arti-cle 100602. https://doi.org/10.1016/j.patter.2022.100602
[53]  Clark, C.R., Galletly, C.A., Ash, D.J., Moores, K.A., Pen-rose, R.A. and McFarlane, A.C. (2009) Evidence-Based Medicine Evaluation of Electrophysiological Studies of the Anxiety Disorders. Clinical EEG and Neuroscience, 40, 84-112. https://doi.org/10.1177/155005940904000208
[54]  Barp, A., Ferrero, A., Casagrande, S., Morini, R. and Zuccarino, R. (2021) Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New. Biomolecules, 11, Article 1246. https://doi.org/10.3390/biom11081246
[55]  Karim, S., Alkreathy, H. and Khan, M.I. (2024) Untargeted Metabolic Profiling of High-Dose Methotrexate Toxicity Shows Alteration in Betaine Metabolism. Drug and Chemical Toxicology, 48, 294-302. https://doi.org/10.1080/01480545.2024.2369587
[56]  Sloan-Dennison, S., Wallace, G.Q., Hassanain, W.A., Laing, S., Faulds, K. and Graham, D. (2024) Advancing SERS as a Quantitative Technique: Challenges, Considerations, and Correlative Approaches to Aid Validation. Nano Convergence, 11, Article No. 33. https://doi.org/10.1186/s40580-024-00443-4
[57]  Moschny, N., Hefner, G., Grohmann, R., Eckermann, G., Maier, H.B., Seifert, J., et al. (2021) Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals, 14, Article 514. https://doi.org/10.3390/ph14060514
[58]  Rogers, J.P., Oldham, M.A., Fricchione, G., Northoff, G., Ellen Wilson, J., Mann, S.C., et al. (2023) Evidence-Based Consensus Guidelines for the Management of Catatonia: Recommendations from the Brit-ish Association for Psychopharmacology. Journal of Psychopharmacology, 37, 327-369. https://doi.org/10.1177/02698811231158232
[59]  Kim, S., Jeong, M. and Ko, B.C. (2021) Lightweight Surrogate Ran-dom Forest Support for Model Simplification and Feature Relevance. Applied Intelligence, 52, 471-481. https://doi.org/10.1007/s10489-021-02451-x
[60]  Bilgilioğlu, S.S., Gezgin, C., Iban, M.C., Bilgilioğlu, H., Gündüz, H.I. and Arslan, ş. (2025) Explainable Sinkhole Susceptibility Mapping Using Machine-Learning-Based SHAP: Quantifying and Comparing the Effects of Contributing Factors in Konya, Türkiye. Applied Sciences, 15, Article 3139. https://doi.org/10.3390/app15063139
[61]  Allgaier, J., Mulansky, L., Draelos, R.L. and Pryss, R. (2023) How Does the Model Make Predictions? A Systematic Literature Review on the Explainability Power of Machine Learning in Healthcare. Artificial Intelligence in Medicine, 143, Article 102616. https://doi.org/10.1016/j.artmed.2023.102616
[62]  Wiersinga, W.J., Rhodes, A., Cheng, A.C., Peacock, S.J. and Prescott, H.C. (2020) Pathophysiology, Transmission, Diagnosis, and Treat-ment of Coronavirus Disease 2019 (COVID-19). JAMA, 324, 782-793. https://doi.org/10.1001/jama.2020.12839
[63]  Kroenke, K. (2014) A Practical and Evidence-Based Approach to Com-mon Symptoms: A Narrative Review. Annals of Internal Medicine, 161, 579-586. https://doi.org/10.7326/m14-0461
[64]  Spiro, S.G., Gould, M.K. and Colice, G.L. (2007) Initial Evaluation of the Patient with Lung Cancer: Symptoms, Signs, Laboratory Tests, and Paraneoplastic Syndromes: ACCP Evidenced-Based Clinical Prac-tice Guidelines. Chest, 132, 149S-160S. https://doi.org/10.1378/chest.07-1358
[65]  Poloni, N., Ielmini, M., Caselli, I., Gasparini, A. and Callegari, C. (2018) A Case of Reversible Splenial Lesion Syndrome (RESLEs) Related to Neuroleptic Ma-lignant Syndrome in a Schizophrenic Patient. Clinical Neuropsychiatry, 15, 319-322.
[66]  Mann, S.C., Caroff, S.N., Keck, P.E. and Lazarus, A. (2008) Neuroleptic Malignant Syndrome and Related Conditions. American Psychiatric Pub.
[67]  Vojjala, N., Malegaonkar, S.K., Arora, K., Sehgal, I.S. and Pannu, A.K. (2024) Dual Toxidrome of Anti-Cholinergic Storm and Neuroleptic Malignant Syndrome: A Therapeutic Challenge Overcome by Intrathecal Neostigmine. The Neuro-hospitalist, 14, 428-431. https://doi.org/10.1177/19418744241254580
[68]  Serrano, W.C. and Maldonado, J. (2021) The Use of Physostigmine in the Diagnosis and Treatment of Anticholinergic Toxicity after Olanzapine Overdose: Literature Review and Case Report. Journal of the Academy of Consultation-Liaison Psychiatry, 62, 285-297. https://doi.org/10.1016/j.jaclp.2020.12.013
[69]  Barile, F.A. (2019) Anticholinergic and Neuroleptic Drugs. In: Barile, F.A., Ed., Barile’s Clinical Toxicology, CRC Press, 251-269. https://doi.org/10.1201/9780429154829-17
[70]  Garg, U. and Christian, M. (2024) 5 Emergency and Intensive Care Management: For Acute Poisonings and Toxicities. In: Choudhuri, A.H. and Das, B., Eds., Interpreting Laboratory Tests in Intensive Care, CRC Press, 39-47. https://doi.org/10.1201/9781003449713-5
[71]  Musselman, M.E. and Saely, S. (2013) Diagnosis and Treatment of Drug-induced Hyperthermia. American Journal of Health-System Pharmacy, 70, 34-42.
[72]  Eyer, F. and Zilker, T. (2007) Bench-to-Bedside Review: Mechanisms and Management of Hyperthermia Due to Toxicity. Critical Care, 11, Article No. 236. https://doi.org/10.1186/cc6177
[73]  Gerretsen, P. and Pollock, B.G. (2011) Drugs with Anticholinergic Properties: A Current Perspective on Use and Safety. Expert Opinion on Drug Safety, 10, 751-765. https://doi.org/10.1517/14740338.2011.579899
[74]  Schachter, M. (2004) Drugs That Affect Autonomic Functions or the Extrapyramidal System. Side Effects of Drugs Annual, 27, 145-155. https://doi.org/10.1016/S0378-6080(10)32013-7

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133