The relationship between chance and determinism has been analyzed by philosophy, mathematics, and physics. With the aim of identifying the intersection between the two, the Law of Probability Equilibrium (LPE) was demonstrated. When the probabilities of natural phenomena differ from zero and one, the LPE shows that the observed probability is empirical and that the cumulative probability functions of these phenomena measure the imminence of their occurrence (“energy concentration”). These functions behave like waves that carry information about the probabilistic (“energetic”) potential for the materialization of such phenomena. Probability functions exhibit properties analogous to quantum systems, such as complementarity, superposition, uncertainty, collapse, duality, interference, and entanglement. The findings indicate that chance and determinism converge at a cumulative limit of ?, forming a self-regulating equilibrium within the probabilistic field. This implies both the certainty of occurrence and the unpredictability of its timing. Even events with infinitesimal probabilities will inevitably occur. The LPE shows that the probability potential decreases until it reaches zero (“maximum entropy”). Accumulated randomness is restricted to a maximum value of ?, allowing for causal processes (e.g., emission and absorption). Each probabilistic event, before being observed, exists in two superposed states: presence and absence, and it possesses a simultaneous and distinct probabilistic duality. One of these values is derived from the density function at the final instant, while the other is accumulated and remains stationary at ?. Upon measurement, the two probability density functions collapse into presence or absence (1 or 0) (“particle modality”). Meanwhile, the two cumulative probability distribution functions remain entangled, each stabilizing at ? (“wave modality”). The LPE unifies principles of classical and quantum physics through a probabilistic view of the universe. The probability of light detection in the universe is 3.33 × 10-9 s/m, a universal parameter that suggests the existence of approximately 8.01 × 1026 stars in the visible universe.
Cite this paper
Traversa, I. (2025). Law of Probability Equilibrium (LPE) and Bounded Randomness: Light in the Universe, Photon Emission and Black Holes. Open Access Library Journal, 12, e3091. doi: http://dx.doi.org/10.4236/oalib.1113091.
Galilei, Galileo (1998) Dialogo sopra i due massimi sistemi del mondo, Tolemaico e Copernicano. In: Besomi, O. and Helbing, M., Eds., Editrice Ante-nore.
Planck, M. (1900) über die Verbesserung der Wien’schen Spektralgleichung. Verhand-lungen der Deutchen Physikalischen Gesellschaft. In: Schöpf, H.G., Ed., Von Kirchhoff Bis Planck. Reihe Wissenschaft. Vieweg Teubner Verlag, 175-178.
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. https://doi.org/10.1103/physrev.47.777
Pearl, J. (2001) Bayesianism and Causality, or, Why I Am Only a Half-Bayesian. In: Cor-field, D. and Williamson, J., Eds., Foundations of Bayesianism. Applied Logic Se-ries, Vol. 24, Springer Netherlands, 19-36. https://doi.org/10.1007/978-94-017-1586-7_2
Lucio, J.H. and Caballero, C. (2006) ¿Aleatoriedad o determin-ismo no lineal?: Análisis de series temporales de contaminantes atmosféricos urbanos. Revista Mexicana de Física, 52, 51-541. https://www.redalyc.org/pdf/570/57019196014.pdf
émile Borel, M. (1909) Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo, 27, 247-271. https://doi.org/10.1007/bf03019651
Tejero, I.P.T. (2020) Posibilidad de nueva luz estelar, bajo la teoría del gradiente de proba-bilidad. Revista Brasileira de física Tecnológica aplicada, 7, 1-22.
Heisenberg, W. (1927) über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik. Zeitschrift für Physik, 43, 172-198. https://doi.org/10.1007/bf01397280
Wesson, P.S. (1991) Olbers’s Paradox and the Spectral Intensity of the Extragalactic Background Light. The Astrophysical Journal, 367, 399. https://doi.org/10.1086/169638
Hippke, M. (2018) Interstellar Communication: Short Pulse Duration Limits of Optical SETI. Journal of Astrophysics and Astronomy, 39, Ar-ticle No. 74. https://doi.org/10.1007/s12036-018-9565-y
Hainaut, O.R. and Willams, A.P. (2020) Impact of Satellite Constellations on Astronomical Observations with ESO Telescopes in the Visible and Infrared Domains. Euro-pean Southern Observatory. Astronomy & Astrophysics, 636, A121.
Fujiwara, T. and Yamaoka, H. (2005) Magnitude Systems in Old Star Catalogues. Journal of Astronomical History and Heritage, 8, 39-47. https://arxiv.org/pdf/astro-ph/0309322
Rodríguez, F.J. and León, F.M. (2003) ¿A qué distancia podemos llegar a ver las tormentas? Consideraciones sobre propagación de la luz en medios estratificados en una atmós-fera estándar. Revista Aficionado Meteorología, 17, Article 25.https://repositorio.aemet.es/bitstream/20.500.11765/12104/1/Distanciadelasnubes1_Rodriguez_RAM2003.pdf
Perrinet, L. (2021) Density of Stars on the Surface of the Sky
https://laurentperrinet.github.io/sciblog/posts/2021-03-
27-density-of-stars-on-the-surface-of-the-sky
Carniani, S., Hainline, K., D’Eugenio, F., Eisenstein, D.J., Jakobsen, P., Witstok, J., et al. (2024) Spectroscopic Confirmation of Two Luminous Galaxies at a Redshift of 14. Nature, 633, 318-322. https://doi.org/10.1038/s41586-024-07860-9