全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
30

相关文章

更多...

Pt掺杂二维ZnIn2S4纳米花促进光催化CO2还原
Pt-Doped Two-Dimensional ZnIn2S4 Nanoflower Promote Photocatalytic CO2 Reduction

DOI: 10.12677/amc.2025.132029, PP. 263-271

Keywords: ZnIn2S4,掺杂,光催化,CO2还原
ZnIn2S4
, Doped, Photocatalysis, CO2 Reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

在探索高效二氧化碳(CO2)还原光催化剂的研究中,铂(Pt)掺杂策略因其显著的催化增强效应而受到广泛关注。本研究采用光化学沉积法成功制备了Pt掺杂的ZnIn2S4纳米花结构,通过X射线衍射(XRD)表征证实了Pt的成功掺杂。实验结果表明,Pt的引入显著优化了材料的界面电荷转移特性。在最优Pt掺杂量条件下,ZnIn2S4光催化剂的CO2还原性能达到20.7 μmol?g?1?h?1,是原始性能的3.1倍。通过多种表征手段的系统研究,发现Pt的引入不仅显著增强了ZnIn2S4的可见光吸收能力和光响应范围,还促进了光生载流子的分离和转移,并有效抑制了电子–空穴的复合。这为开发基于Pt掺杂的高效光催化剂提供了新的机遇和思路,有望推动光催化领域的创新和发展。
In studies exploring efficient carbon dioxide (CO2) reduction photocatalysts, the platinum (Pt)-doping strategy has attracted much attention due to its remarkable catalytic enhancement effect. In this study, Pt-doped ZnIn2S4 nanoflower structures were successfully prepared by photochemical deposition, and the successful doping of Pt was confirmed by X-ray diffraction (XRD) characterization. Experimental results show that the introduction of Pt significantly optimizes the interfacial charge transfer properties of the material. Under the condition of optimal Pt doping, the CO2 reduction performance of ZnIn2S4 photocatalyst reached 20.7 μmol?g1?h1, which is 3.1 times of the original performance. A systematic study by multiple characterization means reveals that the introduction of Pt not only significantly enhances the visible light absorption capacity and photoresponse range of ZnIn2S4, but also promotes the separation and transfer of photogenerated carriers, and effectively inhibits the electron-hole complexation. This provides new opportunities and ideas for the development of efficient photocatalysts based on Pt doping, which is expected to promote the innovation and development of photocatalysis.

References

[1]  Uddin, N., Zhang, H., Du, Y., Jia, G., Wang, S. and Yin, Z. (2020) Structural‐Phase Catalytic Redox Reactions in Energy and Environmental Applications. Advanced Materials, 32, Article ID: 1905739.
https://doi.org/10.1002/adma.201905739
[2]  Wang, X., Ren, Y., Li, Y. and Zhang, G. (2022) Fabrication of 1D/2D BiPO4/g-C3N4 Heterostructured Photocatalyst with Enhanced Photocatalytic Efficiency for NO Removal. Chemosphere, 287, Article ID: 132098.
https://doi.org/10.1016/j.chemosphere.2021.132098
[3]  Yang, Y., Li, P., Zheng, X., Sun, W., Dou, S.X., Ma, T., et al. (2022) Anion-Exchange Membrane Water Electrolyzers and Fuel Cells. Chemical Society Reviews, 51, 9620-9693.
https://doi.org/10.1039/d2cs00038e
[4]  Zheng, X., Yuan, M., Zhao, Y., Li, Z., Shi, K., Li, H., et al. (2023) Status and Prospects of MXene‐Based Lithium-Oxygen Batteries: Theoretical Prediction and Experimental Modulation. Advanced Energy Materials, 13, Article ID: 2204019.
https://doi.org/10.1002/aenm.202204019
[5]  Schwietzke, S., Sherwood, O.A., Bruhwiler, L.M.P., Miller, J.B., Etiope, G., Dlugokencky, E.J., et al. (2016) Upward Revision of Global Fossil Fuel Methane Emissions Based on Isotope Database. Nature, 538, 88-91.
https://doi.org/10.1038/nature19797
[6]  Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., et al. (2008) Progress in Carbon Dioxide Separation and Capture: A Review. Journal of Environmental Sciences, 20, 14-27.
https://doi.org/10.1016/s1001-0742(08)60002-9
[7]  Ombadi, M., Risser, M.D., Rhoades, A.M. and Varadharajan, C. (2023) A Warming-Induced Reduction in Snow Fraction Amplifies Rainfall Extremes. Nature, 619, 305-310.
https://doi.org/10.1038/s41586-023-06092-7
[8]  Wang, W., An, W., Ramalingam, B., Mukherjee, S., Niedzwiedzki, D.M., Gangopadhyay, S., et al. (2012) Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society, 134, 11276-11281.
https://doi.org/10.1021/ja304075b
[9]  Indrakanti, V.P., Kubicki, J.D. and Schobert, H.H. (2009) Photoinduced Activation of CO2 on Ti-Based Heterogeneous Catalysts: Current State, Chemical Physics-Based Insights and Outlook. Energy & Environmental Science, 2, 745-758.
https://doi.org/10.1039/b822176f
[10]  Roy, S.C., Varghese, O.K., Paulose, M. and Grimes, C.A. (2010) Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano, 4, 1259-1278.
https://doi.org/10.1021/nn9015423
[11]  Wang, L., Cheng, B., Zhang, L. and Yu, J. (2021) In Situ Irradiated XPS Investigation on S‐scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small, 17, Article ID: 2103447.
https://doi.org/10.1002/smll.202103447
[12]  Wu, J., Huang, Y., Ye, W. and Li, Y. (2017) CO2 Reduction: From the Electrochemical to Photochemical Approach. Advanced Science, 4, Article ID: 1700194.
https://doi.org/10.1002/advs.201700194
[13]  Wang, K., Du, Y., Li, Y., Wu, X., Hu, H., Wang, G., et al. (2022) Atomic‐Level Insight of Sulfidation‐Engineered Aurivillius‐Related Bi2O2SiO3 Nanosheets Enabling Visible Light Low‐Concentration CO2 Conversion. Carbon Energy, 5, e264.
https://doi.org/10.1002/cey2.264
[14]  Liu, F. and Fan, Z. (2023) Defect Engineering of Two-Dimensional Materials for Advanced Energy Conversion and Storage. Chemical Society Reviews, 52, 1723-1772.
https://doi.org/10.1039/d2cs00931e
[15]  Gong, E., Ali, S., Hiragond, C.B., Kim, H.S., Powar, N.S., Kim, D., et al. (2022) Solar Fuels: Research and Development Strategies to Accelerate Photocatalytic CO2 Conversion into Hydrocarbon Fuels. Energy & Environmental Science, 15, 880-937.
https://doi.org/10.1039/d1ee02714j
[16]  He, Y., Yin, L., Yuan, N. and Zhang, G. (2024) Adsorption and Activation, Active Site and Reaction Pathway of Photocatalytic CO2 Reduction: A Review. Chemical Engineering Journal, 481, Article ID: 148754.
https://doi.org/10.1016/j.cej.2024.148754
[17]  Wang, S., Wang, J., Wang, Y., Sui, X., Wu, S., Dai, W., et al. (2024) Insight into the Selectivity-Determining Step of Various Photocatalytic CO2 Reduction Products by Inorganic Semiconductors. ACS Catalysis, 14, 10760-10788.
https://doi.org/10.1021/acscatal.4c01712
[18]  Liao, L., Xie, G., Xie, X. and Zhang, N. (2023) Advances in Modulating the Activity and Selectivity of Photocatalytic CO2 Reduction to Multicarbon Products. The Journal of Physical Chemistry C, 127, 2766-2781.
https://doi.org/10.1021/acs.jpcc.2c08963
[19]  Albero, J., Peng, Y. and García, H. (2020) Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10, 5734-5749.
https://doi.org/10.1021/acscatal.0c00478
[20]  Yang, R., Mei, L., Fan, Y., Zhang, Q., Zhu, R., Amal, R., et al. (2021) ZnIn2S4‐Based Photocatalysts for Energy and Environmental Applications. Small Methods, 5, Article ID: 2100887.
https://doi.org/10.1002/smtd.202100887
[21]  Huang, H., Xiao, K., Tian, N., Dong, F., Zhang, T., Du, X., et al. (2017) Template-Free Precursor-Surface-Etching Route to Porous, Thin G-C3N4 Nanosheets for Enhancing Photocatalytic Reduction and Oxidation Activity. Journal of Materials Chemistry A, 5, 17452-17463.
https://doi.org/10.1039/c7ta04639a
[22]  Pan, B., Wu, Y., Rhimi, B., Qin, J., Huang, Y., Yuan, M., et al. (2021) Oxygen-Doping of ZnIn2S4 Nanosheets Towards Boosted Photocatalytic CO2 Reduction. Journal of Energy Chemistry, 57, 1-9.
https://doi.org/10.1016/j.jechem.2020.08.024
[23]  Zhou, F., Zhang, Y., Wu, J., Yang, W., Fang, X., Jia, T., et al. (2024) Utilizing Er-Doped ZnIn2S4 for Efficient Photocatalytic CO2 Conversion. Applied Catalysis B: Environmental, 341, Article ID: 123347.
https://doi.org/10.1016/j.apcatb.2023.123347
[24]  Chen, X., Sun, H., Zelekew, O.A., Zhang, J., Guo, Y., Zeng, A., et al. (2020) Biological Renewable Hemicellulose-Template for Synthesis of Visible Light Responsive Sulfur-Doped Tio2 for Photocatalytic Oxidation of Toxic Organic and As(III) Pollutants. Applied Surface Science, 525, Article ID: 146531.
https://doi.org/10.1016/j.apsusc.2020.146531
[25]  Shi, X., Dai, C., Wang, X., Hu, J., Zhang, J., Zheng, L., et al. (2022) Protruding Pt Single-Sites on Hexagonal ZnIn2S4 to Accelerate Photocatalytic Hydrogen Evolution. Nature Communications, 13, Article No. 1287.
https://doi.org/10.1038/s41467-022-28995-1
[26]  Xiong, Z., Wang, H., Xu, N., Li, H., Fang, B., Zhao, Y., et al. (2015) Photocatalytic Reduction of CO2 on Pt2+–pt0/TiO2 Nanoparticles under UV/Vis Light Irradiation: A Combination of Pt2+ Doping and Pt Nanoparticles Deposition. International Journal of Hydrogen Energy, 40, 10049-10062.
https://doi.org/10.1016/j.ijhydene.2015.06.075
[27]  Wang, S., Guan, B.Y. and Lou, X.W.D. (2018) Construction of ZnIn2S4–In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. Journal of the American Chemical Society, 140, 5037-5040.
https://doi.org/10.1021/jacs.8b02200
[28]  Wang, S., Wang, Y., Zhang, S.L., Zang, S. and Lou, X.W. (2019) Supporting Ultrathin Znin2s4 Nanosheets on Co/N‐Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H2 Generation. Advanced Materials, 31, Article ID: 1903404.
https://doi.org/10.1002/adma.201903404
[29]  Zhang, H., Wang, Y., Zuo, S., Zhou, W., Zhang, J. and Lou, X.W.D. (2021) Isolated Cobalt Centers on W18O49 Nanowires Perform as a Reaction Switch for Efficient CO2 Photoreduction. Journal of the American Chemical Society, 143, 2173-2177.
https://doi.org/10.1021/jacs.0c08409
[30]  Lu, K., Li, Y., Zhang, F., Qi, M., Chen, X., Tang, Z., et al. (2020) Rationally Designed Transition Metal Hydroxide Nanosheet Arrays on Graphene for Artificial CO2 Reduction. Nature Communications, 11, Article No. 5181.
https://doi.org/10.1038/s41467-020-18944-1

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133