全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
30

相关文章

更多...

探究核子配对近似模型非集体对参数对129Sn的影响
Probing the Effect of the Non-Collective Pair Parameter of the Nucleon Pair Approximation Shell Model on 129Sn

DOI: 10.12677/app.2025.154032, PP. 284-289

Keywords: 核子配对近似模型,非集体对,能态
Nucleon Pair Approximation Shell Model
, Non-Collective Pair, Energy State

Full-Text   Cite this paper   Add to My Lib

Abstract:

核子配对近似模型是研究原子核性质的重要方法之一,该方法已经在许多核领域内取得了重要成果。在对核129Sn的研究过程中,添加非集体对参数,并将该参数进行调整,从而观察非集体配对方式对核子能态的影响。经过计算后,发现非集体对主要对负宇称能态有较大影响,而在正宇称能态中对角动量较高的能态有较大的影响。
The nucleon pair approximation shell model is one of the most important methods for studying the properties of atomic nuclei, and the method has yielded important results in many nuclear fields. During the study of nuclear 129Sn, the non-collective pairing parameter is added and the parameter is tuned so as to observe the effect of the non-collective pairing approach on the energy states of nuclei. After calculations, it is found that the non-collective pairing has a large effect mainly on the negative-universal energy states, while in the positive-universal energy states it has a large effect on the energy states with higher angular momentum.

References

[1]  Mayer, M.G. (1949) On Closed Shells in Nuclei. II. Physical Review, 75, 1969-1970.
https://doi.org/10.1103/physrev.75.1969
[2]  Haxel, O., Jensen, J.H.D. and Suess, H.E. (1949) On the “Magic Numbers” in Nuclear Structure. Physical Review, 75, 1766-1766.
https://doi.org/10.1103/physrev.75.1766.2
[3]  Zhao, Y.M. and Arima, A. (2014) Nucleon-Pair Approximation to the Nuclear Shell Model. Physics Reports, 545, 1-45.
https://doi.org/10.1016/j.physrep.2014.07.002
[4]  Chen, J.Q., Chen, B.Q. and Klein, A. (1993) Factorization of Commutators: The Wick Theorem for Coupled Operators. Nuclear Physics A, 554, 61-76.
https://doi.org/10.1016/0375-9474(93)90357-4
[5]  Chen, J. (1993) The Wick Theorem for Coupled Fermion Clusters. Nuclear Physics A, 562, 218-240.
https://doi.org/10.1016/0375-9474(93)90197-6
[6]  Higashiyama, K., Yoshinaga, N. and Tanabe, K. (2002) Shell Model Study of Backbending Phenomena in Xe Isotopes. Physical Review C, 65, Article ID: 054317.
https://doi.org/10.1103/physrevc.65.054317
[7]  Sieja, K., Martínez-Pinedo, G., Coquard, L. and Pietralla, N. (2009) Description of Proton-Neutron Mixed-Symmetry States Near 132Sn within a Realistic Large Scale Shell Model. Physical Review C, 80, Article ID: 054311.
https://doi.org/10.1103/physrevc.80.054311
[8]  Higashiyama, K. and Yoshinaga, N. (2011) Pair-Truncated Shell-Model Analysis of Nuclei around Mass 130. Physical Review C, 83, Article ID: 034321.
https://doi.org/10.1103/physrevc.83.034321
[9]  Kusakari, H., Sugawara, M., Fujioka, M., Kawamura, N., Hayashibe, S., Iura, K., et al. (1984) Nuclear g-Factor of the 2972 keV Isomeric State in 130Xe. Physical Review C, 30, 820-822.
https://doi.org/10.1103/physrevc.30.820
[10]  Das, P., Pillay, R.G., Krishnamurthy, V.V., Mishra, S.N. and Devare, S.H. (1996) g-Factor Measurement of 132Ba in the Backbending Region. Physical Review C, 53, 1009-1011.
https://doi.org/10.1103/physrevc.53.1009
[11]  Fogelberg, B., Heyde, K. and Sau, J. (1981) Energy Levels and Transition Probabilities in 130Sn. Nuclear Physics A, 352, 157-180.
https://doi.org/10.1016/0375-9474(81)90374-2
[12]  Genevey, J., Pinston, J.A., Foin, C., Rejmund, M., Casten, R.F., Faust, H. and Oberstedt, S. (2001) Conversion Electron Measurements of Isomeric Transitions in 130, 132Te and 134Xe. Physical Review C, 63, Article ID: 054315.
[13]  Shizuma, T., Gan, Z.G., Ogawa, K., Nakada, H., Oshima, M., Toh, Y., et al. (2004) A New Isomer in 136Ba Populated by Deep Inelastic Collisions. The European Physical Journal A, 20, 207-210.
https://doi.org/10.1140/epja/i2003-10163-6
[14]  卢希庭. 原子核物理学[M]. 第4版. 北京: 原子能出版社, 2001.
[15]  Fogelberg, B. and Blomqvist, J. (1984) Single-Hole and Three-Quasiparticle Levels in 131Sn Observed in the Decay of 131g, m1, m2In. Nuclear Physics A, 429, 205-217.
https://doi.org/10.1016/0375-9474(84)90205-7
[16]  Baldridge, W.J. (1978) Shell-Model Studies for the 132Sn region. I. Few Proton Cases. Physical Review C, 18, Article 530.
[17]  ENSDF Viewer: National Nuclear Data Center. NNDC|National Nuclear Data Center.
[18]  Jia, J., Shi, D., Zhao, J. and Wang, B. (2007) Structural Properties of Silver Nanowires from Atomistic Descriptions. Physical Review B, 76, Article ID: 165420.
https://doi.org/10.1103/physrevb.76.165420
[19]  Lozeva, R.L., et al. (2008) New Sub-��s Isomers in 125, 127, 129Sn and Isomer Systematics of 124-130Sn. Physical Review C, 77, Article ID: 064313.
[20]  Kumar, G., Kumar, S., Kumar, A. and Parida, P. (2024) Predicting Edge-Localized Monovacancy Defects in Zigzag Graphene Nanoribbons from Floquet Quasienergy Spectrum. Physical Review B, 109, Article ID: 235401.
https://doi.org/10.1103/physrevb.109.235401

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133