全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
20

相关文章

更多...

渗硼温度对Inconel 625的微观组织及磨损性能的研究
Effect of Boronizing Temperature on Microstructure and Wear Properties of Inconel 625

DOI: 10.12677/amc.2025.132014, PP. 122-132

Keywords: 镍基合金Inconel 625,固体渗硼,耐磨性,动力学
Nickel-Based Alloy Inconel 625
, Solid Boronizing, Wear Resistance, Kinetics

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了不同的渗硼温度(850℃~980℃)对Inconel 625镍基合金进行渗硼处理。研究表明,随着渗硼温度的增加,渗硼层的厚度会不断增加;当渗硼温度达到980℃时,渗层出现裂缝和孔洞;渗硼层主要由Ni3B和Cr2B等硬质相硼化物组成;在950℃时,合金的表面硬度达到1279.8 HV0.1的峰值,相较于基体263.4 HV0.1得到显著提升;渗硼处理后试样表面摩擦因数和截面磨痕面积显著减小;渗硼层厚度的平方与时间呈线性关系,B原子在Inconel 625渗层中的扩散激活能为227 KJ/mol1
The boronizing treatment of Inconel 625 nickel-based alloy at different boronizing temperatures (850?C~980?C) was studied. The results show that the thickness of boronizing layer increases with the increase of boronizing temperature. When the boriding temperature reaches 980?C, cracks and voids appear in the boriding layer. The boriding layer is mainly composed of hard phase borides such as Ni3B and Cr2B. At 950?C, the surface hardness of the alloy reaches a peak of 1279.8 HV0.1, which is significantly improved compared with the matrix of 263.4 HV0.1; after boronizing treatment, the surface friction coefficient and cross-sectional wear scar area of the sample are significantly reduced. The square of the thickness of boronizing layer is linear with time, and the diffusion activation energy of B atom in Inconel 625 boronizing layer is 227 KJ/mol1.

References

[1]  Moskal, G., Niemiec, D., Chmiela, B., Kałamarz, P., Durejko, T., Ziętala, M., et al. (2020) Microstructural Characterization of Laser-Cladded Nicraly Coatings on Inconel 625 Ni-Based Superalloy and 316L Stainless Steel. Surface and Coatings Technology.
https://doi.org/10.1016/j.surfcoat.2019.125317
[2]  Singh, V. and Meletis, E.I. (2006) Synthesis, Characterization and Properties of Intensified Plasma-Assisted Nitrided Superalloy Inconel 718. Surface and Coatings Technology, 201, 1093-1101.
https://doi.org/10.1016/j.surfcoat.2006.01.034
[3]  Sharma, Y.C., Kumar, R., Vidyasagar, V. and Bhardwaj, D. (2019) Low Temperature Plasma Ion Nitriding (PIN) of Inconel 690 Alloy. Materials Research Express, 6, Article 026559.
https://doi.org/10.1088/2053-1591/aaf1f3
[4]  Sun, Y. (2003) Kinetics of Layer Growth during Plasma Nitriding of Nickel Based Alloy Inconel 600. Journal of Alloys and Compounds, 351, 241-247.
https://doi.org/10.1016/s0925-8388(02)01034-4
[5]  Ding, L., Hu, S., Wang, H. and Shen, J. (2022) Oxidation Behavior and High Temperature Friction and Wear Resistance of TiN-VC Reinforced VN Alloy/Co-Based Composite Coatings by Laser Cladding. Journal of Materials Engineering and Performance, 31, 3481-3492.
https://doi.org/10.1007/s11665-021-06497-3
[6]  Lee, K., Park, J., Kang, J., Lee, T.G., Kim, H. and Kim, K. (2020) Surface Modification of Solid-State Nanopore by Plasma-Polymerized Chemical Vapor Deposition of Poly (Ethylene Glycol) for Stable Device Operation. Nanotechnology, 31, Article 185503.
https://doi.org/10.1088/1361-6528/ab6cdb
[7]  Yang, H., Kainuma, S., Yang, M., Muto, K. and Asano, T. (2021) Fundamental Study on Weather Resistance of Overlapping Layers between Al-5Mg Alloy Thermal Spray Coating and Heavy-Duty Paint Coating. IOP Conference Series: Materials Science and Engineering, 1165, Article 012003.
https://doi.org/10.1088/1757-899x/1165/1/012003
[8]  Kulka, M., Makuch, N., Dziarski, P. and Piasecki, A. (2014) A Study of Nanoindentation for Mechanical Characterization of Chromium and Nickel Borides’ Mixtures Formed by Laser Boriding. Ceramics International, 40, 6083-6094.
https://doi.org/10.1016/j.ceramint.2013.11.059
[9]  Petrova, R.S., Suwattananont, N., Pallegar, K.Κ. and Vangaveti, R. (2007) Boron Coating to Combat Corrosion and Oxidation. Corrosion Reviews, 25, 555-570.
https://doi.org/10.1515/corrrev.2007.25.5-6.555
[10]  Leroy, L., Girault, P., Grosseau-Poussard, J.L. and Dinhut, J.F. (2002) Ion Implantation Reinforcement of the Protective Efficiency of Nickel in Artificial Sea-Water. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 198, 49-56.
https://doi.org/10.1016/s0168-583x(02)01494-5
[11]  Mishigdorzhiyn, U., Chen, Y., Ulakhanov, N. and Liang, H. (2020) Microstructure and Wear Behavior of Tungsten Hot-Work Steel after Boriding and Boroaluminizing. Lubricants, 8, Article 26.
https://doi.org/10.3390/lubricants8030026
[12]  Öge, M., Küçük, Y., Öge, T.Ö., Günen, A., Kanca, Y. and Gök, M.S. (2023) Effect of Boriding on High Temperature Tribological Behavior of Cocrmo Alloy. Tribology International, 187, Article 108697.
https://doi.org/10.1016/j.triboint.2023.108697
[13]  Delgado-Brito, A.M., López-Suero, D., Ruiz-Ríos, A., García-León, R.A., Martínez-Trinidad, J., Oseguera-Peña, J., et al. (2019) Effect of the Diffusion Annealing Process in the Indentation Properties of Cobalt Boride Layer. Ceramics International, 45, 7767-7777.
https://doi.org/10.1016/j.ceramint.2019.01.081
[14]  Mendoza, C.I.V., Mendoza, J.L.R., Galván, V.I., Hodgkins, R.P., Valdivieso, A.L., Palacios, L.L.S., et al. (2014) Effect of Substrate Roughness, Time and Temperature on the Processing of Iron Boride Coatings: Experimental and Statistical Approaches. International Journal of Surface Science and Engineering, 8, 71-91.
https://doi.org/10.1504/ijsurfse.2014.059315
[15]  Yan, P.X., Zhang, X.M., Xu, J.W., Wu, Z.G. and Song, Q.M. (2001) High-temperature Behavior of the Boride Layer of 45# Carbon Steel. Materials Chemistry and Physics, 71, 107-110.
https://doi.org/10.1016/s0254-0584(01)00270-x
[16]  Mu, D., Shen, B., Yang, C. and Zhao, X. (2009) Microstructure Analysis of Boronized Pure Nickel Using Boronizing Powders with Sic as Diluent. Vacuum, 83, 1481-1484.
https://doi.org/10.1016/j.vacuum.2009.06.048
[17]  Chen, T. and Koyama, S. (2020) Influence of Boriding Temperature on Microstructure and Tribological Properties of Titanium. Solid State Sciences, 107, Article 106369.
https://doi.org/10.1016/j.solidstatesciences.2020.106369
[18]  Li, H., Qiao, M. and Zhou, C. (2014) Formation and Cyclic Oxidation Resistance of Hf-Co-Modified Aluminide Coatings on Nickel Base Superalloys. Materials Chemistry and Physics, 143, 915-920.
https://doi.org/10.1016/j.matchemphys.2013.09.016
[19]  Aytekin, H. and Akçin, Y. (2013) Characterization of Borided Incoloy 825 Alloy. Materials & Design, 50, 515-521.
https://doi.org/10.1016/j.matdes.2013.03.015
[20]  Lou, D.C., Solberg, J.K., Akselsen, O.M. and Dahl, N. (2009) Microstructure and Property Investigation of Paste Boronized Pure Nickel and Nimonic 90 Superalloy. Materials Chemistry and Physics, 115, 239-244.
https://doi.org/10.1016/j.matchemphys.2008.11.055
[21]  Campos, I., Ramírez, G., Figueroa, U., Martínez, J. and Morales, O. (2007) Evaluation of Boron Mobility on the Phases FeB, Fe2B and Diffusion Zone in AISI 1045 and M2 Steels. Applied Surface Science, 253, 3469-3475.
https://doi.org/10.1016/j.apsusc.2006.07.046
[22]  Malakhov, D.V. and DeBoer, A.A. (2024) Thermodynamic Aspects of Powder-Pack Boronizing. Journal of Phase Equilibria and Diffusion, 45, 367-383.
https://doi.org/10.1007/s11669-024-01081-3
[23]  Ozbek, I. (2014) Mechanical Properties and Kinetics of Borided AISI M50 Bearing Steel. Arabian Journal for Science and Engineering, 39, 5185-5192.
https://doi.org/10.1007/s13369-014-1207-3
[24]  Atul, S.C., Adalarasan, R. and Santhanakumar, M. (2015) Study on Slurry Paste Boronizing of 410 Martensitic Stainless Steel Using Taguchi Based Desirability Analysis (TDA). International Journal of Manufacturing, Materials, and Mechanical Engineering, 5, 64-77.
https://doi.org/10.4018/ijmmme.2015070104
[25]  Ozdemir, O., Omar, M.A., Usta, M., Zeytin, S., Bindal, C. and Ucisik, A.H. (2008) An Investigation on Boriding Kinetics of AISI 316 Stainless Steel. Vacuum, 83, 175-179.
https://doi.org/10.1016/j.vacuum.2008.03.026
[26]  Contreras, A., León, C., Jimenez, O., Sosa, E. and Pérez, R. (2006) Electrochemical Behavior and Microstructural Characterization of 1026 Ni-B Coated Steel. Applied Surface Science, 253, 592-599.
https://doi.org/10.1016/j.apsusc.2005.12.161
[27]  Domínguez, M.O., Silva, J.Z., Keddam, M., Mejía, O.D. and Espinosa, M.E. (2015) Diffusion Model and Characterisation of Fe2B Layers on AISI 1018 Steel. International Journal of Surface Science and Engineering, 9, 281-297.
https://doi.org/10.1504/ijsurfse.2015.070808
[28]  Tabur, M., Izciler, M., Gul, F. and Karacan, I. (2009) Abrasive Wear Behavior of Boronized AISI 8620 Steel. Wear, 266, 1106-1112.
https://doi.org/10.1016/j.wear.2009.03.006

Full-Text

  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133