全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
20

相关文章

更多...

Impact of k xn Force on Potential Oscillations

DOI: 10.4236/ajcm.2025.151003, PP. 58-65

Keywords: 1D Nonlinear Forces, Period Prediction, Harmonic Oscillations, Mathematica

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is common sense to assume, under the influence of modified Hooke law, that a spring-mass system should oscillate. A systematic numeric analysis proves otherwise. We have proven that the mentioned modified force subject to k xn for even n integers fails to produce oscillations. In contrast, the same format for odd n integers is conducive to harmonic oscillations. For the latter case, the impact of the chosen odd n values on the oscillation periods is mathematically identified. For selected cases, the corresponding oscillations are graphed. The analysis is based on applying a Computer Algebra System (CAS), Mathematica [1]-[3].

References

[1]  (2024) Mathematica V14.1.
http://Wolfram.com
[2]  Wolfram, S. (2003) The Mathematica Book. 5th Edition, Cambridge University Publications, Cambridge.
[3]  Sarafian, H. (2019) Mathematica Graphics Examples. 2nd Edition, Scientific Seasrch Publishing, Wuhan.
[4]  Sarafian, H. (213) Linear, Cubic and Quintic Coordinate-Dependent Forces and Kinematic Characteristics of a Spring-Mass System. World Journal of Mechanics, 3, 265-269.
https://doi.org/10.4236/wjm.2013.36027
[5]  Sarafian, H. (2010) Static Electric-Spring and Nonlinear Oscillations. Journal of Electromagnetic Analysis and Applications, 2, 75-81.
https://doi.org/10.4236/jemaa.2010.22011
[6]  Sarafian, H. (2023) Haiduke Sarafian’s Collective Articles 2020-2023. Scientific Research Search Publishing, Wuhan

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133