全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
70

相关文章

更多...

一类单自由度双侧含约束的碰撞振动系统动力学研究
Dynamics Study of a Class of Single Degree of Freedom Double-Sided Constrained Collision Vibration Systems

DOI: 10.12677/dsc.2025.141001, PP. 1-10

Keywords: 非对称,吸引域,胞映射
Non-Symmertric
, Attraction Domain, Cell-to-Cell Mapping

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究对一种具有双侧非对称约束的单自由度非对称碰撞振动系统进行了深入探讨。首先,对系统进行了无量纲化处理,并详细分析了其周期运动的分岔类型。接着,本研究推导了系统在周期运动条件下的Jacobi矩阵,并运用参数状态空间联合仿真的方法,系统地探究了系统在参数平面 ( ω ),( ω,δ ) 下的转迁规律及变化参数 ω 时的动力学行为。此外,本文还研究还关注了系统在状态空间中吸引域的存在现象。
This study delves into a single-degree-of-freedom asymmetric impact vibration system with bilateral asymmetric constraints. Initially, the system was subjected to a dimensionless transformation, and a detailed analysis was conducted on its bifurcation types of periodic motions. Subsequently, the Jacobi matrix of the system under periodic motion conditions was derived. Utilizing a combined simulation approach of parameter and state space, a systematic exploration was performed on the transition laws of the system in the parameter plane ( ω ),( ω,δ ) and its dynamic behaviors when varying the parameters ω . Additionally, the study also focused on the existence phenomenon of the attraction basins in the state space of the system.

References

[1]  Ma, Y., Ing, J., Banerjee, S., Wiercigroch, M. and Pavlovskaia, E. (2008) The Nature of the Normal Form Map for Soft Impacting Systems. International Journal of Non-Linear Mechanics, 43, 504-513.
https://doi.org/10.1016/j.ijnonlinmec.2008.04.001
[2]  田海勇, 刘卫华, 赵日旭. 随机干扰下碰撞振动系统的动力学分析[J]. 振动与冲击, 2009, 28(9): 163-167.
[3]  张惠. 碰撞振动系统参数-状态空间全局动力学研究[D]: [博士学位论文]. 兰州: 兰州交通大学, 2021.
[4]  Nusse, H.E. and Yorke, J.A. (1995) Border-Collision Bifurcations for Piecewise Smooth One-Dimensional Maps. International Journal of Bifurcation and Chaos, 5, 189-207.
https://doi.org/10.1142/s0218127495000156
[5]  Nusse, H.E., Ott, E. and Yorke, J.A. (1994) Border-Collision Bifurcations: An Explanation for Observed Bifurcation Phenomena. Physical Review E, 49, 1073-1076.
https://doi.org/10.1103/physreve.49.1073
[6]  Nordmark, A.B. (1991) Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator. Journal of Sound and Vibration, 145, 279-297.
https://doi.org/10.1016/0022-460x(91)90592-8
[7]  di Bernardo, M., Budd, C.J. and Champneys, A.R. (2001) Normal Form Maps for Grazing Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems. Physica D: Nonlinear Phenomena, 160, 222-254.
https://doi.org/10.1016/s0167-2789(01)00349-9
[8]  Di Bernardo, M., Budd, C.J. and Champneys, A.R. (2001) Grazing and Border-Collision in Piecewise-Smooth Systems: A Unified Analytical Framework. Physical Review Letters, 86, 2553-2556.
https://doi.org/10.1103/physrevlett.86.2553
[9]  Parker, T.S. and Chua, L.O. (2012) Practical Numerical Algorithms for Chaotic Systems. Springer Science & Business Media.
[10]  李银山. 振动力学: 线性振动[M]. 北京: 人民交通出版社, 2022.
[11]  文成秀, 姚玉玺, 闻邦椿, 等. 动力系统的点映射-胞映射综合法[J]. 振动工程学报, 1997, 10(4): 21-27.
[12]  Hsu, C.S. (1980) A Theory of Cell-to-Cell Mapping Dynamical Systems. Journal of Applied Mechanics, 47, 931-939.
https://doi.org/10.1115/1.3153816
[13]  Hsu, C.S. (1981) A Generalized Theory of Cell-to-Cell Mapping for Nonlinear Dynamical Systems. Journal of Applied Mechanics, 48, 634-642.
https://doi.org/10.1115/1.3157686
[14]  Hsu, C.S. and Tongue, B.H. (1988) Cell-to-Cell Mapping, a Method of Global Analysis for Nonlinear Systems. Journal of Applied Mechanics, 55, 749-750.
https://doi.org/10.1115/1.3125869
[15]  Hsu, C.S. (1995) Global Analysis of Dynamical Systems Using Posets and Digraphs. International Journal of Bifurcation and Chaos, 5, 1085-1118.
https://doi.org/10.1142/s021812749500079x
[16]  Van Der Spek, J.A.W., De Hoon, C.A.L., De Kraker, A. and Van Campen, D.H. (1994) Application of Cell Mapping Methods to a Discontinuous Dynamic System. Nonlinear Dynamics, 6, 87-99.
https://doi.org/10.1007/bf00045434
[17]  Virgin, L.N. and Begley, C.J. (1999) Grazing Bifurcations and Basins of Attraction in an Impact-Friction Oscillator. Physica D: Nonlinear Phenomena, 130, 43-57.
https://doi.org/10.1016/s0167-2789(99)00016-0
[18]  Levitas, J., Weller, T. and Singer, J. (1994) Poincaré-Like Simple Cell Mapping for Non-Linear Dynamical Systems. Journal of Sound and Vibration, 176, 641-662.
https://doi.org/10.1006/jsvi.1994.1404
[19]  刘恒, 虞烈, 谢友柏, 等. Poincare型胞映射分析方法及其应用[J]. 力学学报, 1999, 31(1): 91-99.
[20]  李得洋, 丁旺才, 丁杰, 等. 单自由度含对称约束碰振系统周期运动的转迁规律分析[J]. 振动与冲击, 2019, 38(22): 52-59.
[21]  张惠, 丁旺才, 李险峰. 分段光滑碰撞振动系统吸引域结构变化机理研究[J]. 振动与冲击, 2019, 38(18): 141-147.
[22]  Zhang, H., Li, X. and Leung, A.Y.T. (2020) A Calculation Method on Bifurcation and State Parameter Sensitivity Analysis of Piecewise Mechanical Systems. International Journal of Bifurcation and Chaos, 30, Article 2030033.
https://doi.org/10.1142/s0218127420300335
[23]  Li, Z., Kang, J., Jiang, J. and Hong, L. (2022) Parallel Subdomain Synthesis of Cell Mapping for Capturing Global Invariant Sets in Higher-Dimensional Dynamical Systems. International Journal of Bifurcation and Chaos, 32, Article 2250231.
https://doi.org/10.1142/s0218127422502315

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133