The use of air conditioning and refrigeration systems improved the standard of living. However, the system contributes to global warming by releasing potential global warming refrigerants directly and powering the system. There is an obligation, like UN Kyoto Protocol, EU MAC Directive and Japan METI Directive to find an alternative low-GWP refrigerant with excellent thermophysical properties. In this paper, the global warming effect of an air-conditioning system is analyzed theoretically using few low-GWP refrigerant mixtures. New refrigerant mixtures are formed based on low GWP, high volumetric capacity, and refrigerating effect. After analyzing, refrigerant blends of R1234yf/R32 (40/60, 50/50, and 60/40 by wt%) and R1234ze/R32 (40/60, 50/50, and 60/40 by wt%) are found promising to replace the widely used R410A. The best performance of the refrigerant blend is found for R1234yf/R32 (40/60). These analyses are crucial for selecting suitable refrigerants for domestic air conditioning systems.
References
[1]
Abas, N., Kalair, A. R., Khan, N., Haider, A., Saleem, Z., & Saleem, M. S. (2018). Natural and Synthetic Refrigerants, Global Warming: A Review. RenewableandSustainableEnergyReviews,90, 557-569. https://doi.org/10.1016/j.rser.2018.03.099
Bolaji, B. O. (2020). Theoretical Assessment of New Low Global Warming Potential Refrigerant Mixtures as Eco-Friendly Alternatives in Domestic Refrigeration Systems. ScientificAfrican,10, e00632. https://doi.org/10.1016/j.sciaf.2020.e00632
[4]
Craig, J. (2016). InternationalClimateChangeLawIntroductiontoProject,ResearchandGeneralInformation. https://doi.org/10.13140/RG.2.2.31167.71848
[5]
Deutsch, P., & Harris, A. (2013). Thermodynamic Model of Electric Vehicle A/C System with Single Evaporator. In IMechE (Ed.), VehicleThermalManagementSystemsConferenceProceedings(VTMS11) (pp. 241-249). Elsevier. https://doi.org/10.1533/9780857094735.6.241
[6]
Emani, M. S., Roy, R., & Mandal, B. K. (2017). Development of Refrigerants: A Brief Review. Indian Journal of Scientific Research,14, 175-181.
[7]
Guilherme, Í. F., Marcucci Pico, D. F., dos Santos, D. D., & Bandarra Filho, E. P. (2022). A Review on the Performance and Environmental Assessment of R-410A Alternative Refrigerants. JournalofBuildingEngineering,47, Article 103847. https://doi.org/10.1016/j.jobe.2021.103847
[8]
Islam, M. A., Srinivasan, K., Thu, K., & Saha, B. B. (2017). Assessment of Total Equivalent Warming Impact (TEWI) of Supermarket Refrigeration Systems. InternationalJournalofHydrogenEnergy,42, 26973-26983. https://doi.org/10.1016/j.ijhydene.2017.07.035
[9]
Kim, S. W., Park, M., Trisna, B. A., & Lee, J. (2024). Comprehensive Analysis of Refrigerant R134a: Implications for Estimating and Managing Greenhouse Gas Emissions. InternationalJournalofRefrigeration,158, 135-143. https://doi.org/10.1016/j.ijrefrig.2023.11.027
[10]
Lee, H., Troch, S., Hwang, Y., & Radermacher, R. (2016). LCCP Evaluation on Various Vapor Compression Cycle Options and Low GWP Refrigerants. InternationalJournalofRefrigeration,70, 128-137. https://doi.org/10.1016/j.ijrefrig.2016.07.003
[11]
Li, G. (2015a). Comprehensive Investigations of Life Cycle Climate Performance of Packaged Air Source Heat Pumps for Residential Application. RenewableandSustainableEnergyReviews,43, 702-710. https://doi.org/10.1016/j.rser.2014.11.078
[12]
Li, G. (2015b). Investigations of Life Cycle Climate Performance and Material Life Cycle Assessment of Packaged Air Conditioners for Residential Application. SustainableEnergyTechnologiesandAssessments,11, 114-125. https://doi.org/10.1016/j.seta.2015.07.002
[13]
Li, G. (2017). Comprehensive Investigation of Transport Refrigeration Life Cycle Climate Performance. SustainableEnergyTechnologiesandAssessments,21, 33-49. https://doi.org/10.1016/j.seta.2017.04.002
[14]
Mahmood, R. A., Ali, O. M., & Noor, M. M. (2020). Mechanical Vapour Compression Refrigeration System: Review Part 1: Environment Challenge. InternationalJournalofAppliedMechanicsandEngineering,25, 130-147. https://doi.org/10.2478/ijame-2020-0054
[15]
Mota-Babiloni, A., Makhnatch, P., Khodabandeh, R., & Navarro-Esbrí, J. (2017). Experimental Assessment of R134a and Its Lower GWP Alternative R513a. InternationalJournalofRefrigeration,74, 682-688. https://doi.org/10.1016/j.ijrefrig.2016.11.021
[16]
Pal, A., Uddin, K., Thu, K., & Saha, B. B. (2018). Environmental Assessment and Characteristics of Next Generation Refrigerants. Evergreen,5, 58-66. https://doi.org/10.5109/1936218
[17]
Pierrehumbert, R. T. (2014). Short-Lived Climate Pollution. AnnualReviewofEarthandPlanetarySciences,42, 341-379. https://doi.org/10.1146/annurev-earth-060313-054843
[18]
Sciance, F. (2013). TheTransitionfromHFC-134atoaLow-GWPRefrigerantinMobileAirConditionersHFO-1234yf. General Motors Public Policy Centre.
[19]
Tyagi, H., Agarwal, A. K., Chakraborty, P. R., & Powar, S. (2019). AdvancesinSolarEnergyResearch. Springer.
[20]
Uddin, K., & Saha, B. B. (2022). An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications. Energies, 15, Article 8082. https://doi.org/10.3390/en15218082
[21]
Uddin, K., Arakaki, S., & Saha, B. B. (2021). Thermodynamic Analysis of Low-GWP Blends to Replace R410A for Residential Building Air Conditioning Applications. EnvironmentalScienceandPollutionResearch,28, 2934-2947. https://doi.org/10.1007/s11356-020-10656-9
[22]
Uddin, K., Saha, B. B., Thu, K., & Koyama, S. (2019). Low GWP Refrigerants for Energy Conservation and Environmental Sustainability. In H. Tyagi, A. Agarwal, P. Chakraborty, & S. Powar (Eds.), Energy,Environment,andSustainability (pp. 485-517). Springer. https://doi.org/10.1007/978-981-13-3302-6_15
[23]
UNEP (2016). MontrealProtocol on SubstancesThatDepletetheOzoneLayer.
United Nations (1998). KyotoProtocoltotheUnitedNationsFrameworkConventiononClimateChange. https://unfccc.int/resource/docs/convkp/kpeng.pdf
[26]
Yang, Z., Feng, B., Ma, H., Zhang, L., Duan, C., Liu, B. et al. (2021). Analysis of Lower GWP and Flammable Alternative Refrigerants. InternationalJournalofRefrigeration,126, 12-22. https://doi.org/10.1016/j.ijrefrig.2021.01.022
[27]
Zaki, O. M., & Abdelaziz, O. (2024). Critical Assessment of R410A Alternatives for Mini-Split Air Conditioners in the Egyptian Market. EnergyandBuiltEnvironment,5, 426-445. https://doi.org/10.1016/j.enbenv.2023.01.003