全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
800

相关文章

更多...
测绘学报  2015 

利用改进三分量分解与Wishart分类的极化SAR图像建筑提取

DOI: 10.11947/j.AGCS.2015.20130535, PP. 206-213

Keywords: 极化SAR,建筑提取,三分量分解,选择性去取向,体散射模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对基于Freeman分解的建筑提取方法存在的问题,提出采用圆极化相关系数实现选择性去取向,同时引入广义体散射模型,构建面向建筑提取的改进三分量分解模型,以准确分析地物的散射特性。在此基础上,发展了一种综合利用改进三分量分解与Wishart迭代分类算法的极化SAR图像建筑提取方法。使用E-SAR全极化数据的试验结果表明,本文方法能够有效减少建筑与植被的误分,并提高建筑信息提取的准确性。

References

[1]  HUANG Guoman, ZHANG Jixian, ZHAO Zheng, et al. Research on Airborne SAR Interferometry Mapping System[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3): 277-279.(黄国满, 张继贤, 赵争, 等. 机载干涉SAR测绘制图应用系统研究[J]. 测绘学报, 2008, 37(3): 277-279.)
[2]  HU Fengming, FAN Xuehua, YANG Ruliang, et al. Study of Target Dectection of SAR Image Using Directional Roughness Feature[J]. Acta Geodaetica et Cartographica Sinica 2009, 38(3): 229-235. (胡风明, 范学花, 杨汝良, 等. 利用方位向粗糙度特征对SAR图像目标检测的研究[J]. 测绘学报, 2009, 38(3): 229-235.)
[3]  LANG Fengkai, YANG Jie, ZHAO Lingli, et al. Polarimetric SAR Data Classification with Freeman Entropy and Anisotropy Analysis[J]. Acta Geodaetica et Cartographica Sinica 2012, 41(4): 556-562. (郎丰铠, 杨杰, 赵伶俐, 等. 基于Freeman散射熵和各向异性度的极化SAR影像分类算法[J]. 测绘学报, 2012, 41(4): 556-562.)
[4]  ATWOOD D K, SMALL D, GENS R. Improving PolSAR Land Cover Classification with Radiometric Correction of the Coherency Matrix[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 848-856.
[5]  CLOUDE S R, POTTIER E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
[6]  YUEH H A, SWARTZ A A, KONG J A, et al. Bayes Classification of Terrain Cover Using Normalized Polarimetric Data[J]. Journal of Geophysical Research, 1988, 93(B12): 15261-15267.
[7]  LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258.
[8]  LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
[9]  YANG Jie, ZHAO Lingli, SHI Lei, et al. Interpretation of Oblique Buildings Based on Optimal Polarimetric Coherence Coefficient[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 577-583. (杨杰, 赵伶俐, 史磊, 等. 基于最优极化相干系数的倾斜建筑解译研究[J]. 测绘学报, 2012, 41(4): 577-583.)
[10]  LEE J S, THOMAS L. The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 49(1): 53-64.
[11]  WANG P, LI Y, HONG W, et al. An Analysis about the Effect of Reflection Asymmetry Compensation on the Freeman-Durden/Wishart Classification[C]//Proceedings of 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar. Soul: IEEE, 2011: 1-4.
[12]  SINGH G, YAMAGUCHI Y, PARK S E. General Four-component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3014-3022.
[13]  ARII M, VANZYL J J, KIM Y. Adaptive Model-based Decomposition of Polarimetric SAR Covariance Matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1104-1113.
[14]  SHAN Z, ZHANG H, WANG C, et al. Four-component Model-based Decomposition of Polarimetric SAR Data for Special Ground Objects[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 9(5): 989-993.
[15]  ANTROPOV O, RAUSTE Y, HAME T. Volume Scattering Modeling in PolSAR Decompositions: Study of ALOS PALSAR Data over Boreal Forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3838-3848.
[16]  FREEMAN A, DURDEN S L. A Three-component Scattering Model for Polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973.
[17]  LEE J S, SSCHULER D L, AINSWORTH T L. Polarimetric SAR Data Compensation for Terrain Azimuth Slope Variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2153-2163.
[18]  LEE J S, SCHULER D L, AINSWORTH T L, et al. On the Estimation of Radar Polarization Orientation Shifts Induced by Terrain Slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 30-41.
[19]  YAMAMOTO Y, YAMAGUCHI Y, YAMADA H, et al. Classification of Terrain Using the Correlation Coefficient in the Circular Polarization Basis for X-band POLSAR Data[C]//Proceedings of 2007 International Symposium of Antenna Propagation. Niigata: IEICE, 2007: 768-771.
[20]  LIU Xiuguo, HUANG Xiaodong, CHEN Qihao, et al. Three-component Model-based Decomposition Integrating De-orientation and Generalized Volume Scattering Model[J]. Journal of Electronics & Information Technology, 2012, 34(10): 2451-2457. (刘修国, 黄晓东, 陈启浩, 等. 综合去取向和广义体散射的三分量极化目标分解模型[J]. 电子与信息学报, 2012, 34(10): 2451-2457.)
[21]  KAJIMOTO M, SUSAKI J. Urban-area Extraction from Polarimetric SAR Images Using Polarization Orientation Angle[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 337-341.

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133