全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
664

相关文章

更多...
测绘学报  2015 

遥感影像单类分类的白化变换法

DOI: 10.11947/j.AGCS.2015.20130439, PP. 190-197

Keywords: 白化变换,单类分类,兴趣类别,阈值

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于白化变换的单类分类方法。该方法仅需要兴趣类别的训练样本。首先,基于兴趣类别对原遥感影像作白化变换,使兴趣类别的分布在各个方向上的方差相同。然后,确定一个距离阈值实现单类分类,根据切比雪夫定理,选择不同倍数的标准差作为阈值进行单类分类试验。结果表明,各个地物类别都在3~4倍标准差的区间内获得最高的分类精度。最后,以3倍标准差作为阈值的单类分类结果,与单类支持向量机方法比较,两种方法的分类结果非常相近,而基于白化变换的方法阈值选择简单,鲁棒性强。

References

[1]  GONG Peng, NIU Zhenguo, CHENG Xiao, et al. China's wetland change (1990—2000) determined by remote sensing [J]. Scientia Sinica: Terrae, 2010, 40(6), 768-775.(宫鹏, 牛振国, 程晓, 等.中国1990和2000基准年湿地变化遥感[J]. 中国科学: 地球科学, 2010, 40(6): 768-775.)
[2]  TOOKE T R, COOPS N C, GOODWIN N R et al. Extracting Urban Vegetation Characteristics Using Spectral Mixture Analysis and Decision Tree Classifications[J]. Remote Sensing of Environment, 2009, 113(2): 398-407.
[3]  SHEN Li, TANG Hong, WANG Shidong, et al. River Extraction from the High Resolution Remote Sensing Image Based on Spatially Correlated Pixels Template and Adboost Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3): 344-350. (慎利, 唐宏, 王世东, 等. 结合空间像素模板和Adaboost算法的高分辨率遥感影像河流提取[J]. 测绘学报, 2013, 42(3): 344-350.)
[4]  XU Hanqiu. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index(MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595. (徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.)
[5]  YAN Baikun, WANG Runsheng, GAN Fuping, et al. Progresses in Minerals Information Extraction Using Thermal Remote Sensing[J]. Advances in Earth Science, 2005, 20(10): 1116-1126. (闫柏琨, 王润生, 甘甫平, 等. 热红外遥感岩矿信息提取研究进展[J]. 地球科学进展, 2005, 20(10): 1116-1126.)
[6]  HU Xiaodong, LUO Jiancheng, XIA Liegang, et al. Adaptive Water Body Information Extraction Using RS TUPU Computing Model[J]. Acta Geodaetica et Cartographica Sinica[J]. 2011, 40(5): 544-550. (胡晓东, 骆剑承, 夏列钢, 等. 图谱迭代反馈的自适应水体信息提取方法[J]. 测绘学报, 2011, 40(5): 544-550.)
[7]  ZHANG Youshui, YUAN Lifeng, YAO Yonghui. Study on Extraction of Paddy Rice Fields from Multitemporal MODIS Images[J]. Journal of Remote Sensing, 2007, 11(2): 282-288. (张友水, 原立峰, 姚永慧. 多时相MOD IS影像水田信息提取研究[J]. 遥感学报, 2007, 11(2): 282-288.)
[8]  INGLADA J. Automatic Recognition of Man-made Objects in High Resolution Optical Remote Sensing Images by SVM Classification of Geometric Image Features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 236-248.
[9]  MELGANI F, BRUZZONE L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1778-1790.
[10]  AVCI E, SENGUR A, HANBAY D. An Optimum Feature Extraction Method for Texture Classification[J]. Expert Systems with Applications, 2009, 36(3): 6036-6043.
[11]  SOHN G, DOWMAN I. Data Fusion of High-resolution Satellite Imagery and LiDAR Data for Automatic Building Extraction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 43-63.
[12]  BENZ U C, HOFMANN P, GREGOR W. Multi-resolution, Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, (58): 239-258.
[13]  MING Dongping, LUO Jiancheng, SHEN Zhanfeng, et al. Research on Information Extraction and Target Recognition from High Resolution Remote Sensing image [J]. Science of Surveying and Mapping, 2005,30(3):18-20.(明冬萍, 骆剑承, 沈占锋, 等. 高分辨率遥感影像信息提取与目标识别技术研究[J]. 测绘科学, 2005, 30(3): 18-20.)
[14]  CHEN Yunhao, FENG Tong, SHI Peijun, et al. Classification of Remote Sensing Image Based on Object Oriented and Class Rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 316-320. (陈云浩, 冯通, 史培军, 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报: 信息科学版, 2006, 31(4): 316-320.)
[15]  CHEN Jie, DENG Min, XIAO Pengfeng, et al. Object-oriented Classification of High Resolution Imagery Combining Support Vector Machine with Granular Computing[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2): 135-141. (陈杰, 邓敏, 肖鹏峰, 等. 结合支持向量机与粒度计算的高分辨率遥感影像面向对象分类[J]. 测绘学报, 2011, 40(2): 135-141.)
[16]  GENELETTI D, GORTE B G H. A Method for Object-oriented Land Cover Classification Combining Landsat TM Data and Aerial Photographs[J]. International Journal of Remote Sensing, 2003, 24(6): 1273-1286.
[17]  SCH?LKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the Support of a High-dimensional Distribution[J]. Neural Computation, 2001, 13(7):1443-1471.
[18]  BRUZZONE L, CHI M, MARCONCINI M. A Novel Transductive SVM for Semisupervised Classification of Remote-sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3363-3373.
[19]  SANCHEZ-HERNANDEZ C, BOYD D S, FOODY G M. One-class Classification for Mapping a Specific Land-cover Class: SVDD Classification of Fenland [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 1061-1073.
[20]  MU?OZ-MARí J, BRUZZONE L, CAMPS-VAILS G. A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2683-2692.
[21]  LI W K, GUO Q H, ELKAN C. A Positive and Unlabeled Learning Algorithm for One-class Classification of Remote-sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 717-725.
[22]  LI W K, GUO Q H. A Maximum Entropy Approach to One-class Classification of Remote Sensing Imagery[J]. International Journal of Remote Sensing, 2010, 31(8): 2227-2235.
[23]  BAATZ M, BENZ U, DEHGHANI S, et al. eCognition User Guide[EB/OL]. Berlin: Definients, (2004-06-20)[2013-02-10]. http://www.definiens- imageing.com.

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133