全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
280

相关文章

更多...

Optimizing Automatic Speech Recognition for Low-Proficient Non-Native Speakers

DOI: 10.1155/2010/973954

Full-Text   Cite this paper   Add to My Lib

Abstract:

Computer-Assisted Language Learning (CALL) applications for improving the oral skills of low-proficient learners have to cope with non-native speech that is particularly challenging. Since unconstrained non-native ASR is still problematic, a possible solution is to elicit constrained responses from the learners. In this paper, we describe experiments aimed at selecting utterances from lists of responses. The first experiment on utterance selection indicates that the decoding process can be improved by optimizing the language model and the acoustic models, thus reducing the utterance error rate from 29–26% to 10–8%. Since giving feedback on incorrectly recognized utterances is confusing, we verify the correctness of the utterance before providing feedback. The results of the second experiment on utterance verification indicate that combining duration-related features with a likelihood ratio (LR) yield an equal error rate (EER) of 10.3%, which is significantly better than the EER for the other measures in isolation.

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133