全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量
300

相关文章

更多...

Impact of DNA methylation on trophoblast function

DOI: 10.1186/1868-7083-3-7

Full-Text   Cite this paper   Add to My Lib

Abstract:

After completing the human genome sequencing in 2000, the world of science thought it overcame the final barrier to understanding the mystery of life. What it stumbled upon, however, really has been just another puzzle and a new riddle to solve. Knowing does not necessarily imply easy understanding.Genetics and cell science have revealed in detail what cells in our body are made of, but have not yet succeeded in explaining the diversity in morphology and function that derives from the same genetic material. Explaining the mechanisms that regulate temporally and spatially dependent expression of selected genes in guiding cell differentiation and function, for processes as divergent as embryo development and schizophrenia, is the ground work of epigenetics [1]. The fact that extrinsic environmental stressors can influence chromatin structure and lead to cell phenotype change, which could then be passed on to the next generation without disturbing the DNA sequence, dramatically challenges the basic Mendelian postulates [2].Most of the current research in epigenetics focuses on regulation of gene transcription by changes in chromatin form and structure, via acquisition of new covalent or non-covalent bonds, through DNA methylation or histone proteins acetylation, methylation and phosphorylation [3,4]. Methylation of the DNA CpG base pairs, located predominantly in the promoter regions of the genes, disables binding of transcription factors, thus "silencing" the gene expression, whereas modifications to histone proteins and nucleosomes influence chromatin form by changing the charge of histone tails and making the DNA physically either more or less accessible to transcription factors [5,6].Though the epigenetic mechanisms are themselves quite simple, easy to explain and reproduce, the complex network of interactions which they induce in order to produce a unique pattern of gene expression, is immensely complex and poses a serious challenge for current and future research

Full-Text

  
  
  

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133